Properties

Label 497.185
Modulus $497$
Conductor $497$
Order $210$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(497, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([35,144]))
 
Copy content pari:[g,chi] = znchar(Mod(185,497))
 

Basic properties

Modulus: \(497\)
Conductor: \(497\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 497.be

\(\chi_{497}(3,\cdot)\) \(\chi_{497}(10,\cdot)\) \(\chi_{497}(12,\cdot)\) \(\chi_{497}(19,\cdot)\) \(\chi_{497}(24,\cdot)\) \(\chi_{497}(38,\cdot)\) \(\chi_{497}(40,\cdot)\) \(\chi_{497}(73,\cdot)\) \(\chi_{497}(75,\cdot)\) \(\chi_{497}(80,\cdot)\) \(\chi_{497}(87,\cdot)\) \(\chi_{497}(89,\cdot)\) \(\chi_{497}(129,\cdot)\) \(\chi_{497}(131,\cdot)\) \(\chi_{497}(145,\cdot)\) \(\chi_{497}(150,\cdot)\) \(\chi_{497}(152,\cdot)\) \(\chi_{497}(157,\cdot)\) \(\chi_{497}(166,\cdot)\) \(\chi_{497}(171,\cdot)\) \(\chi_{497}(178,\cdot)\) \(\chi_{497}(180,\cdot)\) \(\chi_{497}(185,\cdot)\) \(\chi_{497}(192,\cdot)\) \(\chi_{497}(206,\cdot)\) \(\chi_{497}(215,\cdot)\) \(\chi_{497}(222,\cdot)\) \(\chi_{497}(229,\cdot)\) \(\chi_{497}(262,\cdot)\) \(\chi_{497}(271,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((143,78)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{24}{35}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(8\)\(9\)\(10\)\(11\)\(12\)
\( \chi_{ 497 }(185, a) \) \(-1\)\(1\)\(e\left(\frac{47}{105}\right)\)\(e\left(\frac{209}{210}\right)\)\(e\left(\frac{94}{105}\right)\)\(e\left(\frac{1}{30}\right)\)\(e\left(\frac{31}{70}\right)\)\(e\left(\frac{12}{35}\right)\)\(e\left(\frac{104}{105}\right)\)\(e\left(\frac{101}{210}\right)\)\(e\left(\frac{97}{105}\right)\)\(e\left(\frac{187}{210}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 497 }(185,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 497 }(185,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 497 }(185,·),\chi_{ 497 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 497 }(185,·)) \;\) at \(\; a,b = \) e.g. 1,2