Properties

Label 4864.db
Modulus $4864$
Conductor $2432$
Order $288$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4864, base_ring=CyclotomicField(288)) M = H._module chi = DirichletCharacter(H, M([144,63,32])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(23,4864)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4864\)
Conductor: \(2432\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(288\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2432.ct
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{288})$
Fixed field: Number field defined by a degree 288 polynomial (not computed)

First 31 of 96 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(21\) \(23\)
\(\chi_{4864}(23,\cdot)\) \(-1\) \(1\) \(e\left(\frac{173}{288}\right)\) \(e\left(\frac{287}{288}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{29}{144}\right)\) \(e\left(\frac{41}{96}\right)\) \(e\left(\frac{241}{288}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{275}{288}\right)\) \(e\left(\frac{113}{144}\right)\)
\(\chi_{4864}(55,\cdot)\) \(-1\) \(1\) \(e\left(\frac{217}{288}\right)\) \(e\left(\frac{67}{288}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{73}{144}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{269}{288}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{7}{288}\right)\) \(e\left(\frac{61}{144}\right)\)
\(\chi_{4864}(119,\cdot)\) \(-1\) \(1\) \(e\left(\frac{241}{288}\right)\) \(e\left(\frac{235}{288}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{97}{144}\right)\) \(e\left(\frac{61}{96}\right)\) \(e\left(\frac{101}{288}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{175}{288}\right)\) \(e\left(\frac{85}{144}\right)\)
\(\chi_{4864}(199,\cdot)\) \(-1\) \(1\) \(e\left(\frac{287}{288}\right)\) \(e\left(\frac{5}{288}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{143}{144}\right)\) \(e\left(\frac{83}{96}\right)\) \(e\left(\frac{235}{288}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{65}{288}\right)\) \(e\left(\frac{11}{144}\right)\)
\(\chi_{4864}(215,\cdot)\) \(-1\) \(1\) \(e\left(\frac{149}{288}\right)\) \(e\left(\frac{119}{288}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{5}{144}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{121}{288}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{107}{288}\right)\) \(e\left(\frac{89}{144}\right)\)
\(\chi_{4864}(263,\cdot)\) \(-1\) \(1\) \(e\left(\frac{247}{288}\right)\) \(e\left(\frac{205}{288}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{103}{144}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{131}{288}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{73}{288}\right)\) \(e\left(\frac{19}{144}\right)\)
\(\chi_{4864}(327,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{288}\right)\) \(e\left(\frac{53}{288}\right)\) \(e\left(\frac{11}{48}\right)\) \(e\left(\frac{47}{144}\right)\) \(e\left(\frac{35}{96}\right)\) \(e\left(\frac{187}{288}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{113}{288}\right)\) \(e\left(\frac{59}{144}\right)\)
\(\chi_{4864}(359,\cdot)\) \(-1\) \(1\) \(e\left(\frac{91}{288}\right)\) \(e\left(\frac{121}{288}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{91}{144}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{215}{288}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{133}{288}\right)\) \(e\left(\frac{7}{144}\right)\)
\(\chi_{4864}(423,\cdot)\) \(-1\) \(1\) \(e\left(\frac{115}{288}\right)\) \(e\left(\frac{1}{288}\right)\) \(e\left(\frac{31}{48}\right)\) \(e\left(\frac{115}{144}\right)\) \(e\left(\frac{55}{96}\right)\) \(e\left(\frac{47}{288}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{13}{288}\right)\) \(e\left(\frac{31}{144}\right)\)
\(\chi_{4864}(503,\cdot)\) \(-1\) \(1\) \(e\left(\frac{161}{288}\right)\) \(e\left(\frac{59}{288}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{17}{144}\right)\) \(e\left(\frac{77}{96}\right)\) \(e\left(\frac{181}{288}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{191}{288}\right)\) \(e\left(\frac{101}{144}\right)\)
\(\chi_{4864}(519,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{288}\right)\) \(e\left(\frac{173}{288}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{23}{144}\right)\) \(e\left(\frac{11}{96}\right)\) \(e\left(\frac{67}{288}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{233}{288}\right)\) \(e\left(\frac{35}{144}\right)\)
\(\chi_{4864}(567,\cdot)\) \(-1\) \(1\) \(e\left(\frac{121}{288}\right)\) \(e\left(\frac{259}{288}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{121}{144}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{77}{288}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{199}{288}\right)\) \(e\left(\frac{109}{144}\right)\)
\(\chi_{4864}(631,\cdot)\) \(-1\) \(1\) \(e\left(\frac{209}{288}\right)\) \(e\left(\frac{107}{288}\right)\) \(e\left(\frac{5}{48}\right)\) \(e\left(\frac{65}{144}\right)\) \(e\left(\frac{29}{96}\right)\) \(e\left(\frac{133}{288}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{239}{288}\right)\) \(e\left(\frac{5}{144}\right)\)
\(\chi_{4864}(663,\cdot)\) \(-1\) \(1\) \(e\left(\frac{253}{288}\right)\) \(e\left(\frac{175}{288}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{109}{144}\right)\) \(e\left(\frac{25}{96}\right)\) \(e\left(\frac{161}{288}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{259}{288}\right)\) \(e\left(\frac{97}{144}\right)\)
\(\chi_{4864}(727,\cdot)\) \(-1\) \(1\) \(e\left(\frac{277}{288}\right)\) \(e\left(\frac{55}{288}\right)\) \(e\left(\frac{25}{48}\right)\) \(e\left(\frac{133}{144}\right)\) \(e\left(\frac{49}{96}\right)\) \(e\left(\frac{281}{288}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{139}{288}\right)\) \(e\left(\frac{121}{144}\right)\)
\(\chi_{4864}(807,\cdot)\) \(-1\) \(1\) \(e\left(\frac{35}{288}\right)\) \(e\left(\frac{113}{288}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{35}{144}\right)\) \(e\left(\frac{71}{96}\right)\) \(e\left(\frac{127}{288}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{29}{288}\right)\) \(e\left(\frac{47}{144}\right)\)
\(\chi_{4864}(823,\cdot)\) \(-1\) \(1\) \(e\left(\frac{185}{288}\right)\) \(e\left(\frac{227}{288}\right)\) \(e\left(\frac{29}{48}\right)\) \(e\left(\frac{41}{144}\right)\) \(e\left(\frac{5}{96}\right)\) \(e\left(\frac{13}{288}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{71}{288}\right)\) \(e\left(\frac{125}{144}\right)\)
\(\chi_{4864}(871,\cdot)\) \(-1\) \(1\) \(e\left(\frac{283}{288}\right)\) \(e\left(\frac{25}{288}\right)\) \(e\left(\frac{7}{48}\right)\) \(e\left(\frac{139}{144}\right)\) \(e\left(\frac{31}{96}\right)\) \(e\left(\frac{23}{288}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{37}{288}\right)\) \(e\left(\frac{55}{144}\right)\)
\(\chi_{4864}(935,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{288}\right)\) \(e\left(\frac{161}{288}\right)\) \(e\left(\frac{47}{48}\right)\) \(e\left(\frac{83}{144}\right)\) \(e\left(\frac{23}{96}\right)\) \(e\left(\frac{79}{288}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{77}{288}\right)\) \(e\left(\frac{95}{144}\right)\)
\(\chi_{4864}(967,\cdot)\) \(-1\) \(1\) \(e\left(\frac{127}{288}\right)\) \(e\left(\frac{229}{288}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{127}{144}\right)\) \(e\left(\frac{19}{96}\right)\) \(e\left(\frac{107}{288}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{97}{288}\right)\) \(e\left(\frac{43}{144}\right)\)
\(\chi_{4864}(1031,\cdot)\) \(-1\) \(1\) \(e\left(\frac{151}{288}\right)\) \(e\left(\frac{109}{288}\right)\) \(e\left(\frac{19}{48}\right)\) \(e\left(\frac{7}{144}\right)\) \(e\left(\frac{43}{96}\right)\) \(e\left(\frac{227}{288}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{265}{288}\right)\) \(e\left(\frac{67}{144}\right)\)
\(\chi_{4864}(1111,\cdot)\) \(-1\) \(1\) \(e\left(\frac{197}{288}\right)\) \(e\left(\frac{167}{288}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{53}{144}\right)\) \(e\left(\frac{65}{96}\right)\) \(e\left(\frac{73}{288}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{155}{288}\right)\) \(e\left(\frac{137}{144}\right)\)
\(\chi_{4864}(1127,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{288}\right)\) \(e\left(\frac{281}{288}\right)\) \(e\left(\frac{23}{48}\right)\) \(e\left(\frac{59}{144}\right)\) \(e\left(\frac{95}{96}\right)\) \(e\left(\frac{247}{288}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{197}{288}\right)\) \(e\left(\frac{71}{144}\right)\)
\(\chi_{4864}(1175,\cdot)\) \(-1\) \(1\) \(e\left(\frac{157}{288}\right)\) \(e\left(\frac{79}{288}\right)\) \(e\left(\frac{1}{48}\right)\) \(e\left(\frac{13}{144}\right)\) \(e\left(\frac{25}{96}\right)\) \(e\left(\frac{257}{288}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{163}{288}\right)\) \(e\left(\frac{1}{144}\right)\)
\(\chi_{4864}(1239,\cdot)\) \(-1\) \(1\) \(e\left(\frac{245}{288}\right)\) \(e\left(\frac{215}{288}\right)\) \(e\left(\frac{41}{48}\right)\) \(e\left(\frac{101}{144}\right)\) \(e\left(\frac{17}{96}\right)\) \(e\left(\frac{25}{288}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{203}{288}\right)\) \(e\left(\frac{41}{144}\right)\)
\(\chi_{4864}(1271,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{288}\right)\) \(e\left(\frac{283}{288}\right)\) \(e\left(\frac{37}{48}\right)\) \(e\left(\frac{1}{144}\right)\) \(e\left(\frac{13}{96}\right)\) \(e\left(\frac{53}{288}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{223}{288}\right)\) \(e\left(\frac{133}{144}\right)\)
\(\chi_{4864}(1335,\cdot)\) \(-1\) \(1\) \(e\left(\frac{25}{288}\right)\) \(e\left(\frac{163}{288}\right)\) \(e\left(\frac{13}{48}\right)\) \(e\left(\frac{25}{144}\right)\) \(e\left(\frac{37}{96}\right)\) \(e\left(\frac{173}{288}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{103}{288}\right)\) \(e\left(\frac{13}{144}\right)\)
\(\chi_{4864}(1415,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{288}\right)\) \(e\left(\frac{221}{288}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{71}{144}\right)\) \(e\left(\frac{59}{96}\right)\) \(e\left(\frac{19}{288}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{281}{288}\right)\) \(e\left(\frac{83}{144}\right)\)
\(\chi_{4864}(1431,\cdot)\) \(-1\) \(1\) \(e\left(\frac{221}{288}\right)\) \(e\left(\frac{47}{288}\right)\) \(e\left(\frac{17}{48}\right)\) \(e\left(\frac{77}{144}\right)\) \(e\left(\frac{89}{96}\right)\) \(e\left(\frac{193}{288}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{35}{288}\right)\) \(e\left(\frac{17}{144}\right)\)
\(\chi_{4864}(1479,\cdot)\) \(-1\) \(1\) \(e\left(\frac{31}{288}\right)\) \(e\left(\frac{133}{288}\right)\) \(e\left(\frac{43}{48}\right)\) \(e\left(\frac{31}{144}\right)\) \(e\left(\frac{19}{96}\right)\) \(e\left(\frac{203}{288}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{1}{288}\right)\) \(e\left(\frac{91}{144}\right)\)
\(\chi_{4864}(1543,\cdot)\) \(-1\) \(1\) \(e\left(\frac{119}{288}\right)\) \(e\left(\frac{269}{288}\right)\) \(e\left(\frac{35}{48}\right)\) \(e\left(\frac{119}{144}\right)\) \(e\left(\frac{11}{96}\right)\) \(e\left(\frac{259}{288}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{41}{288}\right)\) \(e\left(\frac{131}{144}\right)\)