Properties

Label 4864.55
Modulus $4864$
Conductor $2432$
Order $288$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4864, base_ring=CyclotomicField(288)) M = H._module chi = DirichletCharacter(H, M([144,99,160]))
 
Copy content pari:[g,chi] = znchar(Mod(55,4864))
 

Basic properties

Modulus: \(4864\)
Conductor: \(2432\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(288\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2432}(1955,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4864.db

\(\chi_{4864}(23,\cdot)\) \(\chi_{4864}(55,\cdot)\) \(\chi_{4864}(119,\cdot)\) \(\chi_{4864}(199,\cdot)\) \(\chi_{4864}(215,\cdot)\) \(\chi_{4864}(263,\cdot)\) \(\chi_{4864}(327,\cdot)\) \(\chi_{4864}(359,\cdot)\) \(\chi_{4864}(423,\cdot)\) \(\chi_{4864}(503,\cdot)\) \(\chi_{4864}(519,\cdot)\) \(\chi_{4864}(567,\cdot)\) \(\chi_{4864}(631,\cdot)\) \(\chi_{4864}(663,\cdot)\) \(\chi_{4864}(727,\cdot)\) \(\chi_{4864}(807,\cdot)\) \(\chi_{4864}(823,\cdot)\) \(\chi_{4864}(871,\cdot)\) \(\chi_{4864}(935,\cdot)\) \(\chi_{4864}(967,\cdot)\) \(\chi_{4864}(1031,\cdot)\) \(\chi_{4864}(1111,\cdot)\) \(\chi_{4864}(1127,\cdot)\) \(\chi_{4864}(1175,\cdot)\) \(\chi_{4864}(1239,\cdot)\) \(\chi_{4864}(1271,\cdot)\) \(\chi_{4864}(1335,\cdot)\) \(\chi_{4864}(1415,\cdot)\) \(\chi_{4864}(1431,\cdot)\) \(\chi_{4864}(1479,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{288})$
Fixed field: Number field defined by a degree 288 polynomial (not computed)

Values on generators

\((3839,2053,4353)\) → \((-1,e\left(\frac{11}{32}\right),e\left(\frac{5}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 4864 }(55, a) \) \(-1\)\(1\)\(e\left(\frac{217}{288}\right)\)\(e\left(\frac{67}{288}\right)\)\(e\left(\frac{13}{48}\right)\)\(e\left(\frac{73}{144}\right)\)\(e\left(\frac{37}{96}\right)\)\(e\left(\frac{269}{288}\right)\)\(e\left(\frac{71}{72}\right)\)\(e\left(\frac{13}{72}\right)\)\(e\left(\frac{7}{288}\right)\)\(e\left(\frac{61}{144}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4864 }(55,a) \;\) at \(\;a = \) e.g. 2