sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([140,160,168]))
pari:[g,chi] = znchar(Mod(1213,4851))
| Modulus: | \(4851\) | |
| Conductor: | \(4851\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(105\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4851}(4,\cdot)\)
\(\chi_{4851}(16,\cdot)\)
\(\chi_{4851}(130,\cdot)\)
\(\chi_{4851}(256,\cdot)\)
\(\chi_{4851}(268,\cdot)\)
\(\chi_{4851}(394,\cdot)\)
\(\chi_{4851}(445,\cdot)\)
\(\chi_{4851}(697,\cdot)\)
\(\chi_{4851}(709,\cdot)\)
\(\chi_{4851}(823,\cdot)\)
\(\chi_{4851}(1087,\cdot)\)
\(\chi_{4851}(1138,\cdot)\)
\(\chi_{4851}(1213,\cdot)\)
\(\chi_{4851}(1516,\cdot)\)
\(\chi_{4851}(1642,\cdot)\)
\(\chi_{4851}(1654,\cdot)\)
\(\chi_{4851}(1780,\cdot)\)
\(\chi_{4851}(1906,\cdot)\)
\(\chi_{4851}(2083,\cdot)\)
\(\chi_{4851}(2095,\cdot)\)
\(\chi_{4851}(2209,\cdot)\)
\(\chi_{4851}(2335,\cdot)\)
\(\chi_{4851}(2347,\cdot)\)
\(\chi_{4851}(2473,\cdot)\)
\(\chi_{4851}(2524,\cdot)\)
\(\chi_{4851}(2599,\cdot)\)
\(\chi_{4851}(2776,\cdot)\)
\(\chi_{4851}(2788,\cdot)\)
\(\chi_{4851}(2902,\cdot)\)
\(\chi_{4851}(3028,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4313,199,442)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{16}{21}\right),e\left(\frac{4}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 4851 }(1213, a) \) |
\(1\) | \(1\) | \(e\left(\frac{29}{105}\right)\) | \(e\left(\frac{58}{105}\right)\) | \(e\left(\frac{22}{35}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{29}{105}\right)\) | \(e\left(\frac{11}{105}\right)\) | \(e\left(\frac{26}{105}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{19}{105}\right)\) |
sage:chi.jacobi_sum(n)