Properties

Label 4851.fa
Modulus $4851$
Conductor $4851$
Order $105$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4851, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([70,50,42])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(4,4851)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4851\)
Conductor: \(4851\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(105\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 105 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(13\) \(16\) \(17\) \(19\) \(20\)
\(\chi_{4851}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{76}{105}\right)\) \(e\left(\frac{47}{105}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{76}{105}\right)\) \(e\left(\frac{94}{105}\right)\) \(e\left(\frac{79}{105}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{86}{105}\right)\)
\(\chi_{4851}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{105}\right)\) \(e\left(\frac{94}{105}\right)\) \(e\left(\frac{26}{35}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{47}{105}\right)\) \(e\left(\frac{83}{105}\right)\) \(e\left(\frac{53}{105}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{67}{105}\right)\)
\(\chi_{4851}(130,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{105}\right)\) \(e\left(\frac{86}{105}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{43}{105}\right)\) \(e\left(\frac{67}{105}\right)\) \(e\left(\frac{82}{105}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{68}{105}\right)\)
\(\chi_{4851}(256,\cdot)\) \(1\) \(1\) \(e\left(\frac{94}{105}\right)\) \(e\left(\frac{83}{105}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{94}{105}\right)\) \(e\left(\frac{61}{105}\right)\) \(e\left(\frac{1}{105}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{29}{105}\right)\)
\(\chi_{4851}(268,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{105}\right)\) \(e\left(\frac{82}{105}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{41}{105}\right)\) \(e\left(\frac{59}{105}\right)\) \(e\left(\frac{44}{105}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{16}{105}\right)\)
\(\chi_{4851}(394,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{105}\right)\) \(e\left(\frac{76}{105}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{38}{105}\right)\) \(e\left(\frac{47}{105}\right)\) \(e\left(\frac{92}{105}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{43}{105}\right)\)
\(\chi_{4851}(445,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{105}\right)\) \(e\left(\frac{89}{105}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{97}{105}\right)\) \(e\left(\frac{73}{105}\right)\) \(e\left(\frac{58}{105}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{105}\right)\)
\(\chi_{4851}(697,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{105}\right)\) \(e\left(\frac{62}{105}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{31}{105}\right)\) \(e\left(\frac{19}{105}\right)\) \(e\left(\frac{64}{105}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{71}{105}\right)\)
\(\chi_{4851}(709,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{105}\right)\) \(e\left(\frac{19}{105}\right)\) \(e\left(\frac{6}{35}\right)\) \(e\left(\frac{27}{35}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{62}{105}\right)\) \(e\left(\frac{38}{105}\right)\) \(e\left(\frac{23}{105}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{37}{105}\right)\)
\(\chi_{4851}(823,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{105}\right)\) \(e\left(\frac{101}{105}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{103}{105}\right)\) \(e\left(\frac{97}{105}\right)\) \(e\left(\frac{67}{105}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{53}{105}\right)\)
\(\chi_{4851}(1087,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{105}\right)\) \(e\left(\frac{1}{105}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{13}{21}\right)\) \(e\left(\frac{53}{105}\right)\) \(e\left(\frac{2}{105}\right)\) \(e\left(\frac{62}{105}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{13}{105}\right)\)
\(\chi_{4851}(1138,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{105}\right)\) \(e\left(\frac{104}{105}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{52}{105}\right)\) \(e\left(\frac{103}{105}\right)\) \(e\left(\frac{43}{105}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{92}{105}\right)\)
\(\chi_{4851}(1213,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{105}\right)\) \(e\left(\frac{58}{105}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{29}{105}\right)\) \(e\left(\frac{11}{105}\right)\) \(e\left(\frac{26}{105}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{19}{105}\right)\)
\(\chi_{4851}(1516,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{105}\right)\) \(e\left(\frac{11}{105}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{17}{21}\right)\) \(e\left(\frac{58}{105}\right)\) \(e\left(\frac{22}{105}\right)\) \(e\left(\frac{52}{105}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{38}{105}\right)\)
\(\chi_{4851}(1642,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{105}\right)\) \(e\left(\frac{8}{105}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{4}{35}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{4}{105}\right)\) \(e\left(\frac{16}{105}\right)\) \(e\left(\frac{76}{105}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{104}{105}\right)\)
\(\chi_{4851}(1654,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{105}\right)\) \(e\left(\frac{37}{105}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{71}{105}\right)\) \(e\left(\frac{74}{105}\right)\) \(e\left(\frac{89}{105}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{61}{105}\right)\)
\(\chi_{4851}(1780,\cdot)\) \(1\) \(1\) \(e\left(\frac{68}{105}\right)\) \(e\left(\frac{31}{105}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{33}{35}\right)\) \(e\left(\frac{4}{21}\right)\) \(e\left(\frac{68}{105}\right)\) \(e\left(\frac{62}{105}\right)\) \(e\left(\frac{32}{105}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{88}{105}\right)\)
\(\chi_{4851}(1906,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{105}\right)\) \(e\left(\frac{88}{105}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{9}{35}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{44}{105}\right)\) \(e\left(\frac{71}{105}\right)\) \(e\left(\frac{101}{105}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{94}{105}\right)\)
\(\chi_{4851}(2083,\cdot)\) \(1\) \(1\) \(e\left(\frac{46}{105}\right)\) \(e\left(\frac{92}{105}\right)\) \(e\left(\frac{18}{35}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{46}{105}\right)\) \(e\left(\frac{79}{105}\right)\) \(e\left(\frac{34}{105}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{41}{105}\right)\)
\(\chi_{4851}(2095,\cdot)\) \(1\) \(1\) \(e\left(\frac{92}{105}\right)\) \(e\left(\frac{79}{105}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{19}{21}\right)\) \(e\left(\frac{92}{105}\right)\) \(e\left(\frac{53}{105}\right)\) \(e\left(\frac{68}{105}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{82}{105}\right)\)
\(\chi_{4851}(2209,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{105}\right)\) \(e\left(\frac{26}{105}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{2}{21}\right)\) \(e\left(\frac{13}{105}\right)\) \(e\left(\frac{52}{105}\right)\) \(e\left(\frac{37}{105}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{23}{105}\right)\)
\(\chi_{4851}(2335,\cdot)\) \(1\) \(1\) \(e\left(\frac{64}{105}\right)\) \(e\left(\frac{23}{105}\right)\) \(e\left(\frac{22}{35}\right)\) \(e\left(\frac{29}{35}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{64}{105}\right)\) \(e\left(\frac{46}{105}\right)\) \(e\left(\frac{61}{105}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{89}{105}\right)\)
\(\chi_{4851}(2347,\cdot)\) \(1\) \(1\) \(e\left(\frac{86}{105}\right)\) \(e\left(\frac{67}{105}\right)\) \(e\left(\frac{23}{35}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{86}{105}\right)\) \(e\left(\frac{29}{105}\right)\) \(e\left(\frac{59}{105}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{31}{105}\right)\)
\(\chi_{4851}(2473,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{105}\right)\) \(e\left(\frac{61}{105}\right)\) \(e\left(\frac{34}{35}\right)\) \(e\left(\frac{13}{35}\right)\) \(e\left(\frac{16}{21}\right)\) \(e\left(\frac{83}{105}\right)\) \(e\left(\frac{17}{105}\right)\) \(e\left(\frac{2}{105}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{58}{105}\right)\)
\(\chi_{4851}(2524,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{105}\right)\) \(e\left(\frac{29}{105}\right)\) \(e\left(\frac{11}{35}\right)\) \(e\left(\frac{32}{35}\right)\) \(e\left(\frac{20}{21}\right)\) \(e\left(\frac{67}{105}\right)\) \(e\left(\frac{58}{105}\right)\) \(e\left(\frac{13}{105}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{62}{105}\right)\)
\(\chi_{4851}(2599,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{105}\right)\) \(e\left(\frac{13}{105}\right)\) \(e\left(\frac{17}{35}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{59}{105}\right)\) \(e\left(\frac{26}{105}\right)\) \(e\left(\frac{71}{105}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{64}{105}\right)\)
\(\chi_{4851}(2776,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{105}\right)\) \(e\left(\frac{2}{105}\right)\) \(e\left(\frac{8}{35}\right)\) \(e\left(\frac{1}{35}\right)\) \(e\left(\frac{5}{21}\right)\) \(e\left(\frac{1}{105}\right)\) \(e\left(\frac{4}{105}\right)\) \(e\left(\frac{19}{105}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{26}{105}\right)\)
\(\chi_{4851}(2788,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{105}\right)\) \(e\left(\frac{4}{105}\right)\) \(e\left(\frac{16}{35}\right)\) \(e\left(\frac{2}{35}\right)\) \(e\left(\frac{10}{21}\right)\) \(e\left(\frac{2}{105}\right)\) \(e\left(\frac{8}{105}\right)\) \(e\left(\frac{38}{105}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{52}{105}\right)\)
\(\chi_{4851}(2902,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{105}\right)\) \(e\left(\frac{41}{105}\right)\) \(e\left(\frac{24}{35}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{8}{21}\right)\) \(e\left(\frac{73}{105}\right)\) \(e\left(\frac{82}{105}\right)\) \(e\left(\frac{22}{105}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{8}{105}\right)\)
\(\chi_{4851}(3028,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{105}\right)\) \(e\left(\frac{38}{105}\right)\) \(e\left(\frac{12}{35}\right)\) \(e\left(\frac{19}{35}\right)\) \(e\left(\frac{11}{21}\right)\) \(e\left(\frac{19}{105}\right)\) \(e\left(\frac{76}{105}\right)\) \(e\left(\frac{46}{105}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{74}{105}\right)\)
\(\chi_{4851}(3040,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{105}\right)\) \(e\left(\frac{97}{105}\right)\) \(e\left(\frac{3}{35}\right)\) \(e\left(\frac{31}{35}\right)\) \(e\left(\frac{1}{21}\right)\) \(e\left(\frac{101}{105}\right)\) \(e\left(\frac{89}{105}\right)\) \(e\left(\frac{29}{105}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{105}\right)\)