sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([140,45,21]))
pari:[g,chi] = znchar(Mod(475,4851))
| Modulus: | \(4851\) | |
| Conductor: | \(4851\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4851}(13,\cdot)\)
\(\chi_{4851}(139,\cdot)\)
\(\chi_{4851}(160,\cdot)\)
\(\chi_{4851}(349,\cdot)\)
\(\chi_{4851}(475,\cdot)\)
\(\chi_{4851}(580,\cdot)\)
\(\chi_{4851}(601,\cdot)\)
\(\chi_{4851}(706,\cdot)\)
\(\chi_{4851}(853,\cdot)\)
\(\chi_{4851}(1042,\cdot)\)
\(\chi_{4851}(1084,\cdot)\)
\(\chi_{4851}(1168,\cdot)\)
\(\chi_{4851}(1294,\cdot)\)
\(\chi_{4851}(1399,\cdot)\)
\(\chi_{4851}(1525,\cdot)\)
\(\chi_{4851}(1546,\cdot)\)
\(\chi_{4851}(1735,\cdot)\)
\(\chi_{4851}(1777,\cdot)\)
\(\chi_{4851}(1966,\cdot)\)
\(\chi_{4851}(1987,\cdot)\)
\(\chi_{4851}(2092,\cdot)\)
\(\chi_{4851}(2218,\cdot)\)
\(\chi_{4851}(2239,\cdot)\)
\(\chi_{4851}(2428,\cdot)\)
\(\chi_{4851}(2470,\cdot)\)
\(\chi_{4851}(2554,\cdot)\)
\(\chi_{4851}(2659,\cdot)\)
\(\chi_{4851}(2680,\cdot)\)
\(\chi_{4851}(2785,\cdot)\)
\(\chi_{4851}(2911,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4313,199,442)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{3}{14}\right),e\left(\frac{1}{10}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 4851 }(475, a) \) |
\(1\) | \(1\) | \(e\left(\frac{71}{210}\right)\) | \(e\left(\frac{71}{105}\right)\) | \(e\left(\frac{199}{210}\right)\) | \(e\left(\frac{1}{70}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{53}{105}\right)\) | \(e\left(\frac{37}{105}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{131}{210}\right)\) |
sage:chi.jacobi_sum(n)