Properties

Label 4851.1084
Modulus $4851$
Conductor $4851$
Order $210$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4851, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([70,135,189]))
 
Copy content pari:[g,chi] = znchar(Mod(1084,4851))
 

Basic properties

Modulus: \(4851\)
Conductor: \(4851\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4851.fw

\(\chi_{4851}(13,\cdot)\) \(\chi_{4851}(139,\cdot)\) \(\chi_{4851}(160,\cdot)\) \(\chi_{4851}(349,\cdot)\) \(\chi_{4851}(475,\cdot)\) \(\chi_{4851}(580,\cdot)\) \(\chi_{4851}(601,\cdot)\) \(\chi_{4851}(706,\cdot)\) \(\chi_{4851}(853,\cdot)\) \(\chi_{4851}(1042,\cdot)\) \(\chi_{4851}(1084,\cdot)\) \(\chi_{4851}(1168,\cdot)\) \(\chi_{4851}(1294,\cdot)\) \(\chi_{4851}(1399,\cdot)\) \(\chi_{4851}(1525,\cdot)\) \(\chi_{4851}(1546,\cdot)\) \(\chi_{4851}(1735,\cdot)\) \(\chi_{4851}(1777,\cdot)\) \(\chi_{4851}(1966,\cdot)\) \(\chi_{4851}(1987,\cdot)\) \(\chi_{4851}(2092,\cdot)\) \(\chi_{4851}(2218,\cdot)\) \(\chi_{4851}(2239,\cdot)\) \(\chi_{4851}(2428,\cdot)\) \(\chi_{4851}(2470,\cdot)\) \(\chi_{4851}(2554,\cdot)\) \(\chi_{4851}(2659,\cdot)\) \(\chi_{4851}(2680,\cdot)\) \(\chi_{4851}(2785,\cdot)\) \(\chi_{4851}(2911,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((4313,199,442)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{9}{14}\right),e\left(\frac{9}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 4851 }(1084, a) \) \(1\)\(1\)\(e\left(\frac{199}{210}\right)\)\(e\left(\frac{94}{105}\right)\)\(e\left(\frac{191}{210}\right)\)\(e\left(\frac{59}{70}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{82}{105}\right)\)\(e\left(\frac{83}{105}\right)\)\(e\left(\frac{6}{35}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{169}{210}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4851 }(1084,a) \;\) at \(\;a = \) e.g. 2