Properties

Label 4851.2666
Modulus $4851$
Conductor $4851$
Order $210$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4851, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([35,195,42]))
 
Copy content pari:[g,chi] = znchar(Mod(2666,4851))
 

Basic properties

Modulus: \(4851\)
Conductor: \(4851\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(210\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4851.fu

\(\chi_{4851}(20,\cdot)\) \(\chi_{4851}(104,\cdot)\) \(\chi_{4851}(335,\cdot)\) \(\chi_{4851}(356,\cdot)\) \(\chi_{4851}(482,\cdot)\) \(\chi_{4851}(608,\cdot)\) \(\chi_{4851}(713,\cdot)\) \(\chi_{4851}(797,\cdot)\) \(\chi_{4851}(839,\cdot)\) \(\chi_{4851}(1049,\cdot)\) \(\chi_{4851}(1280,\cdot)\) \(\chi_{4851}(1301,\cdot)\) \(\chi_{4851}(1406,\cdot)\) \(\chi_{4851}(1490,\cdot)\) \(\chi_{4851}(1532,\cdot)\) \(\chi_{4851}(1721,\cdot)\) \(\chi_{4851}(1742,\cdot)\) \(\chi_{4851}(1868,\cdot)\) \(\chi_{4851}(1973,\cdot)\) \(\chi_{4851}(1994,\cdot)\) \(\chi_{4851}(2099,\cdot)\) \(\chi_{4851}(2183,\cdot)\) \(\chi_{4851}(2225,\cdot)\) \(\chi_{4851}(2414,\cdot)\) \(\chi_{4851}(2435,\cdot)\) \(\chi_{4851}(2561,\cdot)\) \(\chi_{4851}(2666,\cdot)\) \(\chi_{4851}(2687,\cdot)\) \(\chi_{4851}(2876,\cdot)\) \(\chi_{4851}(2918,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 210 polynomial (not computed)

Values on generators

\((4313,199,442)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{13}{14}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 4851 }(2666, a) \) \(1\)\(1\)\(e\left(\frac{107}{210}\right)\)\(e\left(\frac{2}{105}\right)\)\(e\left(\frac{59}{105}\right)\)\(e\left(\frac{37}{70}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{37}{210}\right)\)\(e\left(\frac{4}{105}\right)\)\(e\left(\frac{18}{35}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{61}{105}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4851 }(2666,a) \;\) at \(\;a = \) e.g. 2