sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4851, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([35,165,42]))
pari:[g,chi] = znchar(Mod(1973,4851))
| Modulus: | \(4851\) | |
| Conductor: | \(4851\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4851}(20,\cdot)\)
\(\chi_{4851}(104,\cdot)\)
\(\chi_{4851}(335,\cdot)\)
\(\chi_{4851}(356,\cdot)\)
\(\chi_{4851}(482,\cdot)\)
\(\chi_{4851}(608,\cdot)\)
\(\chi_{4851}(713,\cdot)\)
\(\chi_{4851}(797,\cdot)\)
\(\chi_{4851}(839,\cdot)\)
\(\chi_{4851}(1049,\cdot)\)
\(\chi_{4851}(1280,\cdot)\)
\(\chi_{4851}(1301,\cdot)\)
\(\chi_{4851}(1406,\cdot)\)
\(\chi_{4851}(1490,\cdot)\)
\(\chi_{4851}(1532,\cdot)\)
\(\chi_{4851}(1721,\cdot)\)
\(\chi_{4851}(1742,\cdot)\)
\(\chi_{4851}(1868,\cdot)\)
\(\chi_{4851}(1973,\cdot)\)
\(\chi_{4851}(1994,\cdot)\)
\(\chi_{4851}(2099,\cdot)\)
\(\chi_{4851}(2183,\cdot)\)
\(\chi_{4851}(2225,\cdot)\)
\(\chi_{4851}(2414,\cdot)\)
\(\chi_{4851}(2435,\cdot)\)
\(\chi_{4851}(2561,\cdot)\)
\(\chi_{4851}(2666,\cdot)\)
\(\chi_{4851}(2687,\cdot)\)
\(\chi_{4851}(2876,\cdot)\)
\(\chi_{4851}(2918,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4313,199,442)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{11}{14}\right),e\left(\frac{1}{5}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 4851 }(1973, a) \) |
\(1\) | \(1\) | \(e\left(\frac{167}{210}\right)\) | \(e\left(\frac{62}{105}\right)\) | \(e\left(\frac{44}{105}\right)\) | \(e\left(\frac{27}{70}\right)\) | \(e\left(\frac{3}{14}\right)\) | \(e\left(\frac{97}{210}\right)\) | \(e\left(\frac{19}{105}\right)\) | \(e\left(\frac{33}{35}\right)\) | \(e\left(\frac{1}{10}\right)\) | \(e\left(\frac{1}{105}\right)\) |
sage:chi.jacobi_sum(n)