Properties

Label 4851.1352
Modulus $4851$
Conductor $4851$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4851, base_ring=CyclotomicField(42)) M = H._module chi = DirichletCharacter(H, M([7,18,21]))
 
Copy content pari:[g,chi] = znchar(Mod(1352,4851))
 

Basic properties

Modulus: \(4851\)
Conductor: \(4851\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(42\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 4851.eh

\(\chi_{4851}(428,\cdot)\) \(\chi_{4851}(659,\cdot)\) \(\chi_{4851}(1121,\cdot)\) \(\chi_{4851}(1352,\cdot)\) \(\chi_{4851}(2045,\cdot)\) \(\chi_{4851}(2507,\cdot)\) \(\chi_{4851}(2738,\cdot)\) \(\chi_{4851}(3200,\cdot)\) \(\chi_{4851}(3893,\cdot)\) \(\chi_{4851}(4124,\cdot)\) \(\chi_{4851}(4586,\cdot)\) \(\chi_{4851}(4817,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

\((4313,199,442)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{3}{7}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 4851 }(1352, a) \) \(1\)\(1\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{11}{42}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{5}{21}\right)\)\(e\left(\frac{5}{7}\right)\)\(-1\)\(e\left(\frac{37}{42}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 4851 }(1352,a) \;\) at \(\;a = \) e.g. 2