sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(476, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,16,39]))
pari:[g,chi] = znchar(Mod(471,476))
| Modulus: | \(476\) | |
| Conductor: | \(476\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(48\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{476}(11,\cdot)\)
\(\chi_{476}(23,\cdot)\)
\(\chi_{476}(39,\cdot)\)
\(\chi_{476}(79,\cdot)\)
\(\chi_{476}(95,\cdot)\)
\(\chi_{476}(107,\cdot)\)
\(\chi_{476}(163,\cdot)\)
\(\chi_{476}(207,\cdot)\)
\(\chi_{476}(235,\cdot)\)
\(\chi_{476}(275,\cdot)\)
\(\chi_{476}(303,\cdot)\)
\(\chi_{476}(347,\cdot)\)
\(\chi_{476}(403,\cdot)\)
\(\chi_{476}(415,\cdot)\)
\(\chi_{476}(431,\cdot)\)
\(\chi_{476}(471,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((239,409,309)\) → \((-1,e\left(\frac{1}{3}\right),e\left(\frac{13}{16}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(23\) | \(25\) | \(27\) |
| \( \chi_{ 476 }(471, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{48}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{25}{48}\right)\) | \(i\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{24}\right)\) | \(e\left(\frac{17}{48}\right)\) | \(e\left(\frac{11}{24}\right)\) | \(e\left(\frac{15}{16}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)