![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([117,20]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(180))
M = H._module
chi = DirichletCharacter(H, M([117,20]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(42,475))
        pari:[g,chi] = znchar(Mod(42,475))
         
     
    
  
   | Modulus: | \(475\) |  | 
   | Conductor: | \(475\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(180\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | odd | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{475}(17,\cdot)\)
  \(\chi_{475}(23,\cdot)\)
  \(\chi_{475}(28,\cdot)\)
  \(\chi_{475}(42,\cdot)\)
  \(\chi_{475}(47,\cdot)\)
  \(\chi_{475}(62,\cdot)\)
  \(\chi_{475}(63,\cdot)\)
  \(\chi_{475}(73,\cdot)\)
  \(\chi_{475}(92,\cdot)\)
  \(\chi_{475}(112,\cdot)\)
  \(\chi_{475}(123,\cdot)\)
  \(\chi_{475}(137,\cdot)\)
  \(\chi_{475}(138,\cdot)\)
  \(\chi_{475}(142,\cdot)\)
  \(\chi_{475}(158,\cdot)\)
  \(\chi_{475}(177,\cdot)\)
  \(\chi_{475}(187,\cdot)\)
  \(\chi_{475}(188,\cdot)\)
  \(\chi_{475}(213,\cdot)\)
  \(\chi_{475}(233,\cdot)\)
  \(\chi_{475}(237,\cdot)\)
  \(\chi_{475}(252,\cdot)\)
  \(\chi_{475}(253,\cdot)\)
  \(\chi_{475}(263,\cdot)\)
  \(\chi_{475}(272,\cdot)\)
  \(\chi_{475}(283,\cdot)\)
  \(\chi_{475}(302,\cdot)\)
  \(\chi_{475}(308,\cdot)\)
  \(\chi_{475}(313,\cdot)\)
  \(\chi_{475}(327,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((77,401)\) → \((e\left(\frac{13}{20}\right),e\left(\frac{1}{9}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | 
    
    
      | \( \chi_{ 475 }(42, a) \) | \(-1\) | \(1\) | \(e\left(\frac{137}{180}\right)\) | \(e\left(\frac{179}{180}\right)\) | \(e\left(\frac{47}{90}\right)\) | \(e\left(\frac{34}{45}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{17}{60}\right)\) | \(e\left(\frac{89}{90}\right)\) | \(e\left(\frac{11}{15}\right)\) | \(e\left(\frac{31}{60}\right)\) | \(e\left(\frac{163}{180}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)