| L(s) = 1 | + (0.0697 − 0.997i)2-s + (0.999 − 0.0348i)3-s + (−0.990 − 0.139i)4-s + (0.0348 − 0.999i)6-s + (0.866 − 0.5i)7-s + (−0.207 + 0.978i)8-s + (0.997 − 0.0697i)9-s + (−0.104 − 0.994i)11-s + (−0.994 − 0.104i)12-s + (0.829 − 0.559i)13-s + (−0.438 − 0.898i)14-s + (0.961 + 0.275i)16-s + (−0.927 − 0.374i)17-s − i·18-s + (0.848 − 0.529i)21-s + (−0.999 + 0.0348i)22-s + ⋯ |
| L(s) = 1 | + (0.0697 − 0.997i)2-s + (0.999 − 0.0348i)3-s + (−0.990 − 0.139i)4-s + (0.0348 − 0.999i)6-s + (0.866 − 0.5i)7-s + (−0.207 + 0.978i)8-s + (0.997 − 0.0697i)9-s + (−0.104 − 0.994i)11-s + (−0.994 − 0.104i)12-s + (0.829 − 0.559i)13-s + (−0.438 − 0.898i)14-s + (0.961 + 0.275i)16-s + (−0.927 − 0.374i)17-s − i·18-s + (0.848 − 0.529i)21-s + (−0.999 + 0.0348i)22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 475 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.815 - 0.578i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9191252120 - 2.882865014i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.9191252120 - 2.882865014i\) |
| \(L(1)\) |
\(\approx\) |
\(1.201125735 - 1.050671574i\) |
| \(L(1)\) |
\(\approx\) |
\(1.201125735 - 1.050671574i\) |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 5 | \( 1 \) |
| 19 | \( 1 \) |
| good | 2 | \( 1 + (0.0697 - 0.997i)T \) |
| 3 | \( 1 + (0.999 - 0.0348i)T \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 11 | \( 1 + (-0.104 - 0.994i)T \) |
| 13 | \( 1 + (0.829 - 0.559i)T \) |
| 17 | \( 1 + (-0.927 - 0.374i)T \) |
| 23 | \( 1 + (-0.694 + 0.719i)T \) |
| 29 | \( 1 + (0.374 + 0.927i)T \) |
| 31 | \( 1 + (0.669 - 0.743i)T \) |
| 37 | \( 1 + (0.587 - 0.809i)T \) |
| 41 | \( 1 + (0.961 + 0.275i)T \) |
| 43 | \( 1 + (-0.984 - 0.173i)T \) |
| 47 | \( 1 + (0.927 - 0.374i)T \) |
| 53 | \( 1 + (0.139 - 0.990i)T \) |
| 59 | \( 1 + (0.241 + 0.970i)T \) |
| 61 | \( 1 + (-0.719 - 0.694i)T \) |
| 67 | \( 1 + (-0.529 + 0.848i)T \) |
| 71 | \( 1 + (-0.882 - 0.469i)T \) |
| 73 | \( 1 + (-0.829 - 0.559i)T \) |
| 79 | \( 1 + (-0.0348 - 0.999i)T \) |
| 83 | \( 1 + (-0.743 - 0.669i)T \) |
| 89 | \( 1 + (-0.961 + 0.275i)T \) |
| 97 | \( 1 + (0.529 + 0.848i)T \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ (1 - \alpha_{p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−24.13997922759269310728108545141, −23.39829259133095479771012877975, −22.26792877309353090703122054468, −21.401655235129055949422440319071, −20.6827700217899728515218871005, −19.64672297836276719382980432898, −18.54191301170584614953620599953, −18.05410044663892528580269691647, −17.10163505548594416054819358495, −15.776028283328352034181562762969, −15.39061852359165560296564476712, −14.497197962626194641000899063949, −13.84733387069594104241023947500, −12.9465264456164648755692057528, −11.960277543469401089645450528719, −10.474187915806257552518233734353, −9.43202876509922170374168215609, −8.584764491129228589156982026594, −8.04436061325571974783380965094, −7.00240530970230516838977263040, −6.05939022702697639968654012031, −4.56643242416105148463243123949, −4.223289071445945183355008118345, −2.60360461091378733739151972359, −1.43915256683439019978330396710,
0.70794408280247783140517177114, 1.71970073396714227566706836634, 2.835133319541742725909505954772, 3.76008175149350705998440487384, 4.58946017454204730514747036392, 5.86944558258648301157340802189, 7.5018972130716016755342498852, 8.38716053141448957787857001109, 8.95652908075488506413957853857, 10.15305227610833432904810165677, 10.93061328480001975584843544339, 11.72479978253967544252174105445, 13.087585240597138311425744169, 13.59436777233092847321765982858, 14.26405445905475939101017298462, 15.24042099391796585491560651557, 16.328143080624174228532656380005, 17.78515603135813471866357739729, 18.21367983160216089679579682349, 19.25306156542890863376083319430, 20.0145127242734513496729260937, 20.61674447027738870547550386227, 21.36165772240559943341478191740, 22.056603388050090342473422694456, 23.32027441495501930628282449479