sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(459, base_ring=CyclotomicField(144))
M = H._module
chi = DirichletCharacter(H, M([136,99]))
pari:[g,chi] = znchar(Mod(41,459))
Modulus: | \(459\) | |
Conductor: | \(459\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(144\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{459}(5,\cdot)\)
\(\chi_{459}(11,\cdot)\)
\(\chi_{459}(14,\cdot)\)
\(\chi_{459}(20,\cdot)\)
\(\chi_{459}(23,\cdot)\)
\(\chi_{459}(29,\cdot)\)
\(\chi_{459}(41,\cdot)\)
\(\chi_{459}(56,\cdot)\)
\(\chi_{459}(65,\cdot)\)
\(\chi_{459}(74,\cdot)\)
\(\chi_{459}(92,\cdot)\)
\(\chi_{459}(95,\cdot)\)
\(\chi_{459}(113,\cdot)\)
\(\chi_{459}(122,\cdot)\)
\(\chi_{459}(131,\cdot)\)
\(\chi_{459}(146,\cdot)\)
\(\chi_{459}(158,\cdot)\)
\(\chi_{459}(164,\cdot)\)
\(\chi_{459}(167,\cdot)\)
\(\chi_{459}(173,\cdot)\)
\(\chi_{459}(176,\cdot)\)
\(\chi_{459}(182,\cdot)\)
\(\chi_{459}(194,\cdot)\)
\(\chi_{459}(209,\cdot)\)
\(\chi_{459}(218,\cdot)\)
\(\chi_{459}(227,\cdot)\)
\(\chi_{459}(245,\cdot)\)
\(\chi_{459}(248,\cdot)\)
\(\chi_{459}(266,\cdot)\)
\(\chi_{459}(275,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((137,190)\) → \((e\left(\frac{17}{18}\right),e\left(\frac{11}{16}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 459 }(41, a) \) |
\(1\) | \(1\) | \(e\left(\frac{41}{72}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{23}{144}\right)\) | \(e\left(\frac{97}{144}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{35}{48}\right)\) | \(e\left(\frac{13}{144}\right)\) | \(e\left(\frac{11}{36}\right)\) | \(e\left(\frac{35}{144}\right)\) | \(e\left(\frac{5}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)