Properties

Label 459.209
Modulus $459$
Conductor $459$
Order $144$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(459, base_ring=CyclotomicField(144)) M = H._module chi = DirichletCharacter(H, M([56,45]))
 
Copy content pari:[g,chi] = znchar(Mod(209,459))
 

Basic properties

Modulus: \(459\)
Conductor: \(459\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(144\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 459.bd

\(\chi_{459}(5,\cdot)\) \(\chi_{459}(11,\cdot)\) \(\chi_{459}(14,\cdot)\) \(\chi_{459}(20,\cdot)\) \(\chi_{459}(23,\cdot)\) \(\chi_{459}(29,\cdot)\) \(\chi_{459}(41,\cdot)\) \(\chi_{459}(56,\cdot)\) \(\chi_{459}(65,\cdot)\) \(\chi_{459}(74,\cdot)\) \(\chi_{459}(92,\cdot)\) \(\chi_{459}(95,\cdot)\) \(\chi_{459}(113,\cdot)\) \(\chi_{459}(122,\cdot)\) \(\chi_{459}(131,\cdot)\) \(\chi_{459}(146,\cdot)\) \(\chi_{459}(158,\cdot)\) \(\chi_{459}(164,\cdot)\) \(\chi_{459}(167,\cdot)\) \(\chi_{459}(173,\cdot)\) \(\chi_{459}(176,\cdot)\) \(\chi_{459}(182,\cdot)\) \(\chi_{459}(194,\cdot)\) \(\chi_{459}(209,\cdot)\) \(\chi_{459}(218,\cdot)\) \(\chi_{459}(227,\cdot)\) \(\chi_{459}(245,\cdot)\) \(\chi_{459}(248,\cdot)\) \(\chi_{459}(266,\cdot)\) \(\chi_{459}(275,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{144})$
Fixed field: Number field defined by a degree 144 polynomial (not computed)

Values on generators

\((137,190)\) → \((e\left(\frac{7}{18}\right),e\left(\frac{5}{16}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 459 }(209, a) \) \(1\)\(1\)\(e\left(\frac{55}{72}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{73}{144}\right)\)\(e\left(\frac{95}{144}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{13}{48}\right)\)\(e\left(\frac{35}{144}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{61}{144}\right)\)\(e\left(\frac{1}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 459 }(209,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 459 }(209,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 459 }(209,·),\chi_{ 459 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 459 }(209,·)) \;\) at \(\; a,b = \) e.g. 1,2