Properties

Label 4536.2623
Modulus $4536$
Conductor $2268$
Order $54$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4536, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([27,0,20,45]))
 
pari: [g,chi] = znchar(Mod(2623,4536))
 

Basic properties

Modulus: \(4536\)
Conductor: \(2268\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2268}(355,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4536.go

\(\chi_{4536}(103,\cdot)\) \(\chi_{4536}(367,\cdot)\) \(\chi_{4536}(607,\cdot)\) \(\chi_{4536}(871,\cdot)\) \(\chi_{4536}(1111,\cdot)\) \(\chi_{4536}(1375,\cdot)\) \(\chi_{4536}(1615,\cdot)\) \(\chi_{4536}(1879,\cdot)\) \(\chi_{4536}(2119,\cdot)\) \(\chi_{4536}(2383,\cdot)\) \(\chi_{4536}(2623,\cdot)\) \(\chi_{4536}(2887,\cdot)\) \(\chi_{4536}(3127,\cdot)\) \(\chi_{4536}(3391,\cdot)\) \(\chi_{4536}(3631,\cdot)\) \(\chi_{4536}(3895,\cdot)\) \(\chi_{4536}(4135,\cdot)\) \(\chi_{4536}(4399,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

\((1135,2269,3809,2593)\) → \((-1,1,e\left(\frac{10}{27}\right),e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\( \chi_{ 4536 }(2623, a) \) \(1\)\(1\)\(e\left(\frac{37}{54}\right)\)\(e\left(\frac{35}{54}\right)\)\(e\left(\frac{25}{54}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{13}{54}\right)\)\(e\left(\frac{10}{27}\right)\)\(e\left(\frac{19}{27}\right)\)\(e\left(\frac{20}{27}\right)\)\(e\left(\frac{2}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4536 }(2623,a) \;\) at \(\;a = \) e.g. 2