sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(449, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([5]))
pari:[g,chi] = znchar(Mod(121,449))
| Modulus: | \(449\) | |
| Conductor: | \(449\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(28\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{449}(114,\cdot)\)
\(\chi_{449}(118,\cdot)\)
\(\chi_{449}(121,\cdot)\)
\(\chi_{449}(141,\cdot)\)
\(\chi_{449}(156,\cdot)\)
\(\chi_{449}(193,\cdot)\)
\(\chi_{449}(256,\cdot)\)
\(\chi_{449}(293,\cdot)\)
\(\chi_{449}(308,\cdot)\)
\(\chi_{449}(328,\cdot)\)
\(\chi_{449}(331,\cdot)\)
\(\chi_{449}(335,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(3\) → \(e\left(\frac{5}{28}\right)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 449 }(121, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{5}{28}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(-1\) | \(e\left(\frac{1}{7}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)