Properties

Label 44100.28921
Modulus $44100$
Conductor $11025$
Order $105$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(44100, base_ring=CyclotomicField(210)) M = H._module chi = DirichletCharacter(H, M([0,70,126,200]))
 
Copy content pari:[g,chi] = znchar(Mod(28921,44100))
 

Basic properties

Modulus: \(44100\)
Conductor: \(11025\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(105\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{11025}(6871,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 44100.op

\(\chi_{44100}(2221,\cdot)\) \(\chi_{44100}(2461,\cdot)\) \(\chi_{44100}(3481,\cdot)\) \(\chi_{44100}(3721,\cdot)\) \(\chi_{44100}(4741,\cdot)\) \(\chi_{44100}(4981,\cdot)\) \(\chi_{44100}(7261,\cdot)\) \(\chi_{44100}(8521,\cdot)\) \(\chi_{44100}(8761,\cdot)\) \(\chi_{44100}(10021,\cdot)\) \(\chi_{44100}(11041,\cdot)\) \(\chi_{44100}(11281,\cdot)\) \(\chi_{44100}(12541,\cdot)\) \(\chi_{44100}(13561,\cdot)\) \(\chi_{44100}(14821,\cdot)\) \(\chi_{44100}(16081,\cdot)\) \(\chi_{44100}(16321,\cdot)\) \(\chi_{44100}(17341,\cdot)\) \(\chi_{44100}(17581,\cdot)\) \(\chi_{44100}(18841,\cdot)\) \(\chi_{44100}(19861,\cdot)\) \(\chi_{44100}(21121,\cdot)\) \(\chi_{44100}(21361,\cdot)\) \(\chi_{44100}(22381,\cdot)\) \(\chi_{44100}(22621,\cdot)\) \(\chi_{44100}(23641,\cdot)\) \(\chi_{44100}(25141,\cdot)\) \(\chi_{44100}(26161,\cdot)\) \(\chi_{44100}(27661,\cdot)\) \(\chi_{44100}(28681,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{105})$
Fixed field: Number field defined by a degree 105 polynomial (not computed)

Values on generators

\((22051,34301,15877,9901)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{3}{5}\right),e\left(\frac{20}{21}\right))\)

First values

\(a\) \(-1\)\(1\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 44100 }(28921, a) \) \(1\)\(1\)\(e\left(\frac{1}{35}\right)\)\(e\left(\frac{52}{105}\right)\)\(e\left(\frac{64}{105}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{16}{35}\right)\)\(e\left(\frac{71}{105}\right)\)\(e\left(\frac{2}{15}\right)\)\(e\left(\frac{92}{105}\right)\)\(e\left(\frac{37}{105}\right)\)\(e\left(\frac{1}{21}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 44100 }(28921,a) \;\) at \(\;a = \) e.g. 2