sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(11025, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([70,126,200]))
pari:[g,chi] = znchar(Mod(6871,11025))
Modulus: | \(11025\) | |
Conductor: | \(11025\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(105\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{11025}(16,\cdot)\)
\(\chi_{11025}(256,\cdot)\)
\(\chi_{11025}(331,\cdot)\)
\(\chi_{11025}(571,\cdot)\)
\(\chi_{11025}(646,\cdot)\)
\(\chi_{11025}(886,\cdot)\)
\(\chi_{11025}(1516,\cdot)\)
\(\chi_{11025}(1591,\cdot)\)
\(\chi_{11025}(1906,\cdot)\)
\(\chi_{11025}(2146,\cdot)\)
\(\chi_{11025}(2221,\cdot)\)
\(\chi_{11025}(2461,\cdot)\)
\(\chi_{11025}(2536,\cdot)\)
\(\chi_{11025}(3091,\cdot)\)
\(\chi_{11025}(3406,\cdot)\)
\(\chi_{11025}(3481,\cdot)\)
\(\chi_{11025}(3721,\cdot)\)
\(\chi_{11025}(3796,\cdot)\)
\(\chi_{11025}(4111,\cdot)\)
\(\chi_{11025}(4666,\cdot)\)
\(\chi_{11025}(4741,\cdot)\)
\(\chi_{11025}(4981,\cdot)\)
\(\chi_{11025}(5056,\cdot)\)
\(\chi_{11025}(5296,\cdot)\)
\(\chi_{11025}(5611,\cdot)\)
\(\chi_{11025}(5686,\cdot)\)
\(\chi_{11025}(6316,\cdot)\)
\(\chi_{11025}(6556,\cdot)\)
\(\chi_{11025}(6631,\cdot)\)
\(\chi_{11025}(6871,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1226,4852,9901)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{3}{5}\right),e\left(\frac{20}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
\( \chi_{ 11025 }(6871, a) \) |
\(1\) | \(1\) | \(e\left(\frac{73}{105}\right)\) | \(e\left(\frac{41}{105}\right)\) | \(e\left(\frac{3}{35}\right)\) | \(e\left(\frac{1}{35}\right)\) | \(e\left(\frac{52}{105}\right)\) | \(e\left(\frac{82}{105}\right)\) | \(e\left(\frac{64}{105}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{76}{105}\right)\) | \(e\left(\frac{16}{35}\right)\) |
sage:chi.jacobi_sum(n)