![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([105,175,126,180]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([105,175,126,180]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(4271,44100))
        pari:[g,chi] = znchar(Mod(4271,44100))
         
     
    
  
   | Modulus: | \(44100\) |  | 
   | Conductor: | \(44100\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(210\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{44100}(911,\cdot)\)
  \(\chi_{44100}(2171,\cdot)\)
  \(\chi_{44100}(3011,\cdot)\)
  \(\chi_{44100}(4271,\cdot)\)
  \(\chi_{44100}(4691,\cdot)\)
  \(\chi_{44100}(5531,\cdot)\)
  \(\chi_{44100}(6791,\cdot)\)
  \(\chi_{44100}(7211,\cdot)\)
  \(\chi_{44100}(8471,\cdot)\)
  \(\chi_{44100}(9731,\cdot)\)
  \(\chi_{44100}(10571,\cdot)\)
  \(\chi_{44100}(10991,\cdot)\)
  \(\chi_{44100}(11831,\cdot)\)
  \(\chi_{44100}(13091,\cdot)\)
  \(\chi_{44100}(13511,\cdot)\)
  \(\chi_{44100}(14771,\cdot)\)
  \(\chi_{44100}(15611,\cdot)\)
  \(\chi_{44100}(16031,\cdot)\)
  \(\chi_{44100}(16871,\cdot)\)
  \(\chi_{44100}(17291,\cdot)\)
  \(\chi_{44100}(19391,\cdot)\)
  \(\chi_{44100}(19811,\cdot)\)
  \(\chi_{44100}(21911,\cdot)\)
  \(\chi_{44100}(22331,\cdot)\)
  \(\chi_{44100}(23171,\cdot)\)
  \(\chi_{44100}(23591,\cdot)\)
  \(\chi_{44100}(24431,\cdot)\)
  \(\chi_{44100}(25691,\cdot)\)
  \(\chi_{44100}(26111,\cdot)\)
  \(\chi_{44100}(27371,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{3}{5}\right),e\left(\frac{6}{7}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) | 
    
    
      | \( \chi_{ 44100 }(4271, a) \) | \(1\) | \(1\) | \(e\left(\frac{23}{105}\right)\) | \(e\left(\frac{37}{105}\right)\) | \(e\left(\frac{51}{70}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{88}{105}\right)\) | \(e\left(\frac{97}{210}\right)\) | \(e\left(\frac{29}{30}\right)\) | \(e\left(\frac{29}{35}\right)\) | \(e\left(\frac{89}{210}\right)\) | \(e\left(\frac{41}{42}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)