sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(210))
M = H._module
chi = DirichletCharacter(H, M([105,35,126,150]))
pari:[g,chi] = znchar(Mod(2171,44100))
Modulus: | \(44100\) | |
Conductor: | \(44100\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(210\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{44100}(911,\cdot)\)
\(\chi_{44100}(2171,\cdot)\)
\(\chi_{44100}(3011,\cdot)\)
\(\chi_{44100}(4271,\cdot)\)
\(\chi_{44100}(4691,\cdot)\)
\(\chi_{44100}(5531,\cdot)\)
\(\chi_{44100}(6791,\cdot)\)
\(\chi_{44100}(7211,\cdot)\)
\(\chi_{44100}(8471,\cdot)\)
\(\chi_{44100}(9731,\cdot)\)
\(\chi_{44100}(10571,\cdot)\)
\(\chi_{44100}(10991,\cdot)\)
\(\chi_{44100}(11831,\cdot)\)
\(\chi_{44100}(13091,\cdot)\)
\(\chi_{44100}(13511,\cdot)\)
\(\chi_{44100}(14771,\cdot)\)
\(\chi_{44100}(15611,\cdot)\)
\(\chi_{44100}(16031,\cdot)\)
\(\chi_{44100}(16871,\cdot)\)
\(\chi_{44100}(17291,\cdot)\)
\(\chi_{44100}(19391,\cdot)\)
\(\chi_{44100}(19811,\cdot)\)
\(\chi_{44100}(21911,\cdot)\)
\(\chi_{44100}(22331,\cdot)\)
\(\chi_{44100}(23171,\cdot)\)
\(\chi_{44100}(23591,\cdot)\)
\(\chi_{44100}(24431,\cdot)\)
\(\chi_{44100}(25691,\cdot)\)
\(\chi_{44100}(26111,\cdot)\)
\(\chi_{44100}(27371,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{1}{6}\right),e\left(\frac{3}{5}\right),e\left(\frac{5}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(2171, a) \) |
\(1\) | \(1\) | \(e\left(\frac{88}{105}\right)\) | \(e\left(\frac{32}{105}\right)\) | \(e\left(\frac{11}{70}\right)\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{8}{105}\right)\) | \(e\left(\frac{47}{210}\right)\) | \(e\left(\frac{19}{30}\right)\) | \(e\left(\frac{9}{35}\right)\) | \(e\left(\frac{199}{210}\right)\) | \(e\left(\frac{19}{42}\right)\) |
sage:chi.jacobi_sum(n)