sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(10))
M = H._module
chi = DirichletCharacter(H, M([0,0,4,0]))
pari:[g,chi] = znchar(Mod(35281,44100))
\(\chi_{44100}(8821,\cdot)\)
\(\chi_{44100}(17641,\cdot)\)
\(\chi_{44100}(26461,\cdot)\)
\(\chi_{44100}(35281,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((1,1,e\left(\frac{2}{5}\right),1)\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(35281, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(1\) |
sage:chi.jacobi_sum(n)