sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(25, base_ring=CyclotomicField(10))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([4]))
pari: [g,chi] = znchar(Mod(6,25))
Basic properties
Modulus: | \(25\) | |
Conductor: | \(25\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(5\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 25.d
\(\chi_{25}(6,\cdot)\) \(\chi_{25}(11,\cdot)\) \(\chi_{25}(16,\cdot)\) \(\chi_{25}(21,\cdot)\)
sage: chi.galois_orbit()
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Values on generators
\(2\) → \(e\left(\frac{2}{5}\right)\)
Values
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
\(1\) | \(1\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(1\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{3}{5}\right)\) |
Related number fields
Field of values: | \(\Q(\zeta_{5})\) |
Fixed field: | 5.5.390625.1 |
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
\(\displaystyle \tau_{2}(\chi_{25}(6,\cdot)) = \sum_{r\in \Z/25\Z} \chi_{25}(6,r) e\left(\frac{2r}{25}\right) = -4.6488824294+-1.8406227634i \)
Jacobi sum
sage: chi.jacobi_sum(n)
\( \displaystyle J(\chi_{25}(6,\cdot),\chi_{25}(1,\cdot)) = \sum_{r\in \Z/25\Z} \chi_{25}(6,r) \chi_{25}(1,1-r) = 0 \)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)
\( \displaystyle K(1,2,\chi_{25}(6,·))
= \sum_{r \in \Z/25\Z}
\chi_{25}(6,r) e\left(\frac{1 r + 2 r^{-1}}{25}\right)
= 2.7079365642+8.3341717833i \)