sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([21,28,21,37]))
pari:[g,chi] = znchar(Mod(23299,44100))
\(\chi_{44100}(4399,\cdot)\)
\(\chi_{44100}(10699,\cdot)\)
\(\chi_{44100}(12199,\cdot)\)
\(\chi_{44100}(16999,\cdot)\)
\(\chi_{44100}(18499,\cdot)\)
\(\chi_{44100}(23299,\cdot)\)
\(\chi_{44100}(24799,\cdot)\)
\(\chi_{44100}(29599,\cdot)\)
\(\chi_{44100}(31099,\cdot)\)
\(\chi_{44100}(37399,\cdot)\)
\(\chi_{44100}(42199,\cdot)\)
\(\chi_{44100}(43699,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((-1,e\left(\frac{2}{3}\right),-1,e\left(\frac{37}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(23299, a) \) |
\(1\) | \(1\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(1\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) |
sage:chi.jacobi_sum(n)