sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(44100, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,21,0,37]))
pari:[g,chi] = znchar(Mod(23201,44100))
\(\chi_{44100}(1601,\cdot)\)
\(\chi_{44100}(4301,\cdot)\)
\(\chi_{44100}(7901,\cdot)\)
\(\chi_{44100}(10601,\cdot)\)
\(\chi_{44100}(14201,\cdot)\)
\(\chi_{44100}(16901,\cdot)\)
\(\chi_{44100}(23201,\cdot)\)
\(\chi_{44100}(26801,\cdot)\)
\(\chi_{44100}(29501,\cdot)\)
\(\chi_{44100}(33101,\cdot)\)
\(\chi_{44100}(39401,\cdot)\)
\(\chi_{44100}(42101,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((22051,34301,15877,9901)\) → \((1,-1,1,e\left(\frac{37}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 44100 }(23201, a) \) |
\(1\) | \(1\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{1}{14}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{5}{14}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) |
sage:chi.jacobi_sum(n)