sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([0,26]))
pari:[g,chi] = znchar(Mod(100,441))
\(\chi_{441}(37,\cdot)\)
\(\chi_{441}(46,\cdot)\)
\(\chi_{441}(100,\cdot)\)
\(\chi_{441}(109,\cdot)\)
\(\chi_{441}(163,\cdot)\)
\(\chi_{441}(172,\cdot)\)
\(\chi_{441}(235,\cdot)\)
\(\chi_{441}(289,\cdot)\)
\(\chi_{441}(298,\cdot)\)
\(\chi_{441}(352,\cdot)\)
\(\chi_{441}(415,\cdot)\)
\(\chi_{441}(424,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((344,199)\) → \((1,e\left(\frac{13}{21}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 441 }(100, a) \) |
\(1\) | \(1\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)