sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([7,19]))
pari:[g,chi] = znchar(Mod(38,441))
Modulus: | \(441\) | |
Conductor: | \(441\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(42\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{441}(5,\cdot)\)
\(\chi_{441}(38,\cdot)\)
\(\chi_{441}(101,\cdot)\)
\(\chi_{441}(131,\cdot)\)
\(\chi_{441}(164,\cdot)\)
\(\chi_{441}(194,\cdot)\)
\(\chi_{441}(257,\cdot)\)
\(\chi_{441}(290,\cdot)\)
\(\chi_{441}(320,\cdot)\)
\(\chi_{441}(353,\cdot)\)
\(\chi_{441}(383,\cdot)\)
\(\chi_{441}(416,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((344,199)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{19}{42}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 441 }(38, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{14}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)