Properties

Label 441.5
Modulus $441$
Conductor $441$
Order $42$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(441)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([35,29]))
 
pari: [g,chi] = znchar(Mod(5,441))
 

Basic properties

Modulus: \(441\)
Conductor: \(441\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(42\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 441.bn

\(\chi_{441}(5,\cdot)\) \(\chi_{441}(38,\cdot)\) \(\chi_{441}(101,\cdot)\) \(\chi_{441}(131,\cdot)\) \(\chi_{441}(164,\cdot)\) \(\chi_{441}(194,\cdot)\) \(\chi_{441}(257,\cdot)\) \(\chi_{441}(290,\cdot)\) \(\chi_{441}(320,\cdot)\) \(\chi_{441}(353,\cdot)\) \(\chi_{441}(383,\cdot)\) \(\chi_{441}(416,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((344,199)\) → \((e\left(\frac{5}{6}\right),e\left(\frac{29}{42}\right))\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\(1\)\(1\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{4}{7}\right)\)\(e\left(\frac{4}{21}\right)\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{41}{42}\right)\)\(e\left(\frac{19}{42}\right)\)\(e\left(\frac{19}{42}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{16}{21}\right)\)\(e\left(\frac{1}{6}\right)\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{21})\)
Fixed field: 42.42.135265838320508910021411644358796004615334045909367351934724248079056959678737055640870296813389.1

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 441 }(5,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{441}(5,\cdot)) = \sum_{r\in \Z/441\Z} \chi_{441}(5,r) e\left(\frac{2r}{441}\right) = -16.4649938101+13.0347220467i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 441 }(5,·),\chi_{ 441 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{441}(5,\cdot),\chi_{441}(1,\cdot)) = \sum_{r\in \Z/441\Z} \chi_{441}(5,r) \chi_{441}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 441 }(5,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{441}(5,·)) = \sum_{r \in \Z/441\Z} \chi_{441}(5,r) e\left(\frac{1 r + 2 r^{-1}}{441}\right) = -0.0 \)