sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(435, base_ring=CyclotomicField(28))
M = H._module
chi = DirichletCharacter(H, M([14,21,16]))
pari:[g,chi] = znchar(Mod(83,435))
Modulus: | \(435\) | |
Conductor: | \(435\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(28\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{435}(23,\cdot)\)
\(\chi_{435}(53,\cdot)\)
\(\chi_{435}(83,\cdot)\)
\(\chi_{435}(107,\cdot)\)
\(\chi_{435}(152,\cdot)\)
\(\chi_{435}(197,\cdot)\)
\(\chi_{435}(227,\cdot)\)
\(\chi_{435}(248,\cdot)\)
\(\chi_{435}(257,\cdot)\)
\(\chi_{435}(368,\cdot)\)
\(\chi_{435}(413,\cdot)\)
\(\chi_{435}(422,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((146,262,31)\) → \((-1,-i,e\left(\frac{4}{7}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 435 }(83, a) \) |
\(1\) | \(1\) | \(e\left(\frac{23}{28}\right)\) | \(e\left(\frac{9}{14}\right)\) | \(e\left(\frac{17}{28}\right)\) | \(e\left(\frac{13}{28}\right)\) | \(e\left(\frac{11}{14}\right)\) | \(e\left(\frac{15}{28}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(i\) | \(e\left(\frac{9}{14}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)