Properties

Label 435.83
Modulus $435$
Conductor $435$
Order $28$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(435, base_ring=CyclotomicField(28)) M = H._module chi = DirichletCharacter(H, M([14,21,16]))
 
Copy content pari:[g,chi] = znchar(Mod(83,435))
 

Basic properties

Modulus: \(435\)
Conductor: \(435\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(28\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 435.bj

\(\chi_{435}(23,\cdot)\) \(\chi_{435}(53,\cdot)\) \(\chi_{435}(83,\cdot)\) \(\chi_{435}(107,\cdot)\) \(\chi_{435}(152,\cdot)\) \(\chi_{435}(197,\cdot)\) \(\chi_{435}(227,\cdot)\) \(\chi_{435}(248,\cdot)\) \(\chi_{435}(257,\cdot)\) \(\chi_{435}(368,\cdot)\) \(\chi_{435}(413,\cdot)\) \(\chi_{435}(422,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{28})\)
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

\((146,262,31)\) → \((-1,-i,e\left(\frac{4}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 435 }(83, a) \) \(1\)\(1\)\(e\left(\frac{23}{28}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{17}{28}\right)\)\(e\left(\frac{13}{28}\right)\)\(e\left(\frac{11}{14}\right)\)\(e\left(\frac{15}{28}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(i\)\(e\left(\frac{9}{14}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 435 }(83,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 435 }(83,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 435 }(83,·),\chi_{ 435 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 435 }(83,·)) \;\) at \(\; a,b = \) e.g. 1,2