Properties

Label 4320.fm
Modulus $4320$
Conductor $2160$
Order $36$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4320, base_ring=CyclotomicField(36)) M = H._module chi = DirichletCharacter(H, M([18,9,32,9])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(7,4320)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4320\)
Conductor: \(2160\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(36\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2160.eg
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: Number field defined by a degree 36 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{4320}(7,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{4320}(823,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{4320}(967,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{4320}(1303,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{4320}(1447,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{4320}(2263,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{4320}(2407,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{4320}(2743,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{4320}(2887,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{4320}(3703,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{4320}(3847,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{18}\right)\)
\(\chi_{4320}(4183,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{18}\right)\)