sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(432, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,27,32]))
pari:[g,chi] = znchar(Mod(115,432))
Modulus: | \(432\) | |
Conductor: | \(432\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{432}(43,\cdot)\)
\(\chi_{432}(67,\cdot)\)
\(\chi_{432}(115,\cdot)\)
\(\chi_{432}(139,\cdot)\)
\(\chi_{432}(187,\cdot)\)
\(\chi_{432}(211,\cdot)\)
\(\chi_{432}(259,\cdot)\)
\(\chi_{432}(283,\cdot)\)
\(\chi_{432}(331,\cdot)\)
\(\chi_{432}(355,\cdot)\)
\(\chi_{432}(403,\cdot)\)
\(\chi_{432}(427,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((271,325,353)\) → \((-1,-i,e\left(\frac{8}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) |
\( \chi_{ 432 }(115, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{29}{36}\right)\) | \(e\left(\frac{13}{36}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(e\left(\frac{5}{18}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)