sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(42881, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,1]))
chi.galois_orbit()
pari:[g,chi] = znchar(Mod(42880,42881))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
sage:kronecker_character(42881)
pari:znchartokronecker(g,chi)
\(\displaystyle\left(\frac{42881}{\bullet}\right)\)
| Modulus: | \(42881\) | |
| Conductor: | \(42881\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(2\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | yes |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
| Character | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
|
\(\chi_{42881}(42880,\cdot)\)
|
\(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) |