sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(425, base_ring=CyclotomicField(20))
M = H._module
chi = DirichletCharacter(H, M([7,5]))
pari:[g,chi] = znchar(Mod(353,425))
| Modulus: | \(425\) | |
| Conductor: | \(425\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(20\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{425}(13,\cdot)\)
\(\chi_{425}(72,\cdot)\)
\(\chi_{425}(98,\cdot)\)
\(\chi_{425}(183,\cdot)\)
\(\chi_{425}(242,\cdot)\)
\(\chi_{425}(327,\cdot)\)
\(\chi_{425}(353,\cdot)\)
\(\chi_{425}(412,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((52,326)\) → \((e\left(\frac{7}{20}\right),i)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 425 }(353, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{17}{20}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{7}{10}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(-1\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{7}{20}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{13}{20}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)