| L(s)  = 1  |   + (0.587 − 0.809i)2-s   + (−0.309 − 0.951i)3-s   + (−0.309 − 0.951i)4-s     + (−0.951 − 0.309i)6-s   − 7-s   + (−0.951 − 0.309i)8-s   + (−0.809 + 0.587i)9-s     + (−0.587 + 0.809i)11-s   + (−0.809 + 0.587i)12-s   + (−0.587 − 0.809i)13-s   + (−0.587 + 0.809i)14-s     + (−0.809 + 0.587i)16-s     + i·18-s   + (0.309 − 0.951i)19-s     + (0.309 + 0.951i)21-s   + (0.309 + 0.951i)22-s  + ⋯ | 
 
| L(s)  = 1  |   + (0.587 − 0.809i)2-s   + (−0.309 − 0.951i)3-s   + (−0.309 − 0.951i)4-s     + (−0.951 − 0.309i)6-s   − 7-s   + (−0.951 − 0.309i)8-s   + (−0.809 + 0.587i)9-s     + (−0.587 + 0.809i)11-s   + (−0.809 + 0.587i)12-s   + (−0.587 − 0.809i)13-s   + (−0.587 + 0.809i)14-s     + (−0.809 + 0.587i)16-s     + i·18-s   + (0.309 − 0.951i)19-s     + (0.309 + 0.951i)21-s   + (0.309 + 0.951i)22-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.995 - 0.0972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 425 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (0.995 - 0.0972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(0.4500733011 + 0.02194091158i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.4500733011 + 0.02194091158i\)  | 
    
    
        
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(0.6009830374 - 0.5987297930i\)  | 
          
    
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(0.6009830374 - 0.5987297930i\)  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 5 |  \( 1 \)  | 
 | 17 |  \( 1 \)  | 
| good | 2 |  \( 1 + (0.587 - 0.809i)T \)  | 
 | 3 |  \( 1 + (-0.309 - 0.951i)T \)  | 
 | 7 |  \( 1 - T \)  | 
 | 11 |  \( 1 + (-0.587 + 0.809i)T \)  | 
 | 13 |  \( 1 + (-0.587 - 0.809i)T \)  | 
 | 19 |  \( 1 + (0.309 - 0.951i)T \)  | 
 | 23 |  \( 1 + (-0.809 - 0.587i)T \)  | 
 | 29 |  \( 1 + (0.951 - 0.309i)T \)  | 
 | 31 |  \( 1 + (0.951 + 0.309i)T \)  | 
 | 37 |  \( 1 + (-0.809 + 0.587i)T \)  | 
 | 41 |  \( 1 + (0.587 + 0.809i)T \)  | 
 | 43 |  \( 1 - iT \)  | 
 | 47 |  \( 1 + (0.951 - 0.309i)T \)  | 
 | 53 |  \( 1 + (0.951 - 0.309i)T \)  | 
 | 59 |  \( 1 + (-0.809 + 0.587i)T \)  | 
 | 61 |  \( 1 + (-0.587 + 0.809i)T \)  | 
 | 67 |  \( 1 + (-0.951 - 0.309i)T \)  | 
 | 71 |  \( 1 + (-0.951 + 0.309i)T \)  | 
 | 73 |  \( 1 + (0.809 + 0.587i)T \)  | 
 | 79 |  \( 1 + (-0.951 + 0.309i)T \)  | 
 | 83 |  \( 1 + (-0.951 - 0.309i)T \)  | 
 | 89 |  \( 1 + (0.809 + 0.587i)T \)  | 
 | 97 |  \( 1 + (0.309 + 0.951i)T \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−23.824131710423086376049813213066, −23.036699400079535397842434217140, −22.34945244259343853041456589544, −21.55525137567414221331795183234, −21.011110311541229503366429317139, −19.76770798702875407589219904721, −18.68258270547983721171251101117, −17.51397422282677352336633429219, −16.64985797027338347444617132860, −16.030728771436544365155434692589, −15.53259135295470188329847542360, −14.28204914975317022916790763533, −13.74067060431439685966865867133, −12.43645614406310075215371660111, −11.773932037006029334708819933730, −10.45930176977169284127193668762, −9.53708024886243105692489491420, −8.6622741825310777473112474740, −7.49664885020864193979564257607, −6.25263136185545877221058383923, −5.7027532173642968412966227920, −4.5633935770568049953410772384, −3.64388216725298091500483881113, −2.77579180192147097676131215316, −0.12902144228317443371685691574, 
0.87194641160390915863338292404, 2.39318562973003324065474403650, 2.931547909966496430974714111297, 4.521734320092875680299035092966, 5.50460996382837858051533178876, 6.46083866812468572849295863852, 7.3614241668187524291443507676, 8.69311585705543120674600286746, 10.00074757159109818888678763871, 10.52985953544509209346303555036, 11.9628973463664825886191660517, 12.34369228897993703180288246890, 13.2399895383343724312448239770, 13.811877419818952515502965093645, 15.0822554529427571138399521735, 15.90502659514249343831390989584, 17.33362819095767608022586300112, 18.06314452233328399114179945008, 18.90623654883541777694261981632, 19.82348413222077592336056752038, 20.162887329350741416265171960312, 21.50845194792144302794849438248, 22.56947777996953731859184845572, 22.80739864154517420931478241648, 23.7757292846667942896268199730