sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4235, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,55,41]))
pari:[g,chi] = znchar(Mod(3709,4235))
| Modulus: | \(4235\) | |
| Conductor: | \(4235\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(110\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4235}(139,\cdot)\)
\(\chi_{4235}(244,\cdot)\)
\(\chi_{4235}(314,\cdot)\)
\(\chi_{4235}(349,\cdot)\)
\(\chi_{4235}(629,\cdot)\)
\(\chi_{4235}(734,\cdot)\)
\(\chi_{4235}(909,\cdot)\)
\(\chi_{4235}(1014,\cdot)\)
\(\chi_{4235}(1084,\cdot)\)
\(\chi_{4235}(1119,\cdot)\)
\(\chi_{4235}(1294,\cdot)\)
\(\chi_{4235}(1399,\cdot)\)
\(\chi_{4235}(1469,\cdot)\)
\(\chi_{4235}(1504,\cdot)\)
\(\chi_{4235}(1679,\cdot)\)
\(\chi_{4235}(1784,\cdot)\)
\(\chi_{4235}(1854,\cdot)\)
\(\chi_{4235}(1889,\cdot)\)
\(\chi_{4235}(2064,\cdot)\)
\(\chi_{4235}(2239,\cdot)\)
\(\chi_{4235}(2274,\cdot)\)
\(\chi_{4235}(2449,\cdot)\)
\(\chi_{4235}(2554,\cdot)\)
\(\chi_{4235}(2624,\cdot)\)
\(\chi_{4235}(2834,\cdot)\)
\(\chi_{4235}(2939,\cdot)\)
\(\chi_{4235}(3009,\cdot)\)
\(\chi_{4235}(3044,\cdot)\)
\(\chi_{4235}(3219,\cdot)\)
\(\chi_{4235}(3324,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2542,1816,2906)\) → \((-1,-1,e\left(\frac{41}{110}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) |
| \( \chi_{ 4235 }(3709, a) \) |
\(1\) | \(1\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{29}{110}\right)\) |
sage:chi.jacobi_sum(n)