Basic properties
Modulus: | \(4235\) | |
Conductor: | \(4235\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(110\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 4235.cv
\(\chi_{4235}(139,\cdot)\) \(\chi_{4235}(244,\cdot)\) \(\chi_{4235}(314,\cdot)\) \(\chi_{4235}(349,\cdot)\) \(\chi_{4235}(629,\cdot)\) \(\chi_{4235}(734,\cdot)\) \(\chi_{4235}(909,\cdot)\) \(\chi_{4235}(1014,\cdot)\) \(\chi_{4235}(1084,\cdot)\) \(\chi_{4235}(1119,\cdot)\) \(\chi_{4235}(1294,\cdot)\) \(\chi_{4235}(1399,\cdot)\) \(\chi_{4235}(1469,\cdot)\) \(\chi_{4235}(1504,\cdot)\) \(\chi_{4235}(1679,\cdot)\) \(\chi_{4235}(1784,\cdot)\) \(\chi_{4235}(1854,\cdot)\) \(\chi_{4235}(1889,\cdot)\) \(\chi_{4235}(2064,\cdot)\) \(\chi_{4235}(2239,\cdot)\) \(\chi_{4235}(2274,\cdot)\) \(\chi_{4235}(2449,\cdot)\) \(\chi_{4235}(2554,\cdot)\) \(\chi_{4235}(2624,\cdot)\) \(\chi_{4235}(2834,\cdot)\) \(\chi_{4235}(2939,\cdot)\) \(\chi_{4235}(3009,\cdot)\) \(\chi_{4235}(3044,\cdot)\) \(\chi_{4235}(3219,\cdot)\) \(\chi_{4235}(3324,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{55})$ |
Fixed field: | Number field defined by a degree 110 polynomial (not computed) |
Values on generators
\((2542,1816,2906)\) → \((-1,-1,e\left(\frac{101}{110}\right))\)
Values
\(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) |
\( \chi_{ 4235 }(2554, a) \) | \(1\) | \(1\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{7}{11}\right)\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{109}{110}\right)\) |