![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4235, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,55,59]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4235, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,55,59]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(3009,4235))
        pari:[g,chi] = znchar(Mod(3009,4235))
         
     
    
  
   | Modulus: | \(4235\) |  | 
   | Conductor: | \(4235\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(110\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{4235}(139,\cdot)\)
  \(\chi_{4235}(244,\cdot)\)
  \(\chi_{4235}(314,\cdot)\)
  \(\chi_{4235}(349,\cdot)\)
  \(\chi_{4235}(629,\cdot)\)
  \(\chi_{4235}(734,\cdot)\)
  \(\chi_{4235}(909,\cdot)\)
  \(\chi_{4235}(1014,\cdot)\)
  \(\chi_{4235}(1084,\cdot)\)
  \(\chi_{4235}(1119,\cdot)\)
  \(\chi_{4235}(1294,\cdot)\)
  \(\chi_{4235}(1399,\cdot)\)
  \(\chi_{4235}(1469,\cdot)\)
  \(\chi_{4235}(1504,\cdot)\)
  \(\chi_{4235}(1679,\cdot)\)
  \(\chi_{4235}(1784,\cdot)\)
  \(\chi_{4235}(1854,\cdot)\)
  \(\chi_{4235}(1889,\cdot)\)
  \(\chi_{4235}(2064,\cdot)\)
  \(\chi_{4235}(2239,\cdot)\)
  \(\chi_{4235}(2274,\cdot)\)
  \(\chi_{4235}(2449,\cdot)\)
  \(\chi_{4235}(2554,\cdot)\)
  \(\chi_{4235}(2624,\cdot)\)
  \(\chi_{4235}(2834,\cdot)\)
  \(\chi_{4235}(2939,\cdot)\)
  \(\chi_{4235}(3009,\cdot)\)
  \(\chi_{4235}(3044,\cdot)\)
  \(\chi_{4235}(3219,\cdot)\)
  \(\chi_{4235}(3324,\cdot)\)
 ... 
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((2542,1816,2906)\) → \((-1,-1,e\left(\frac{59}{110}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(12\) | \(13\) | \(16\) | \(17\) | 
    
    
      | \( \chi_{ 4235 }(3009, a) \) | \(1\) | \(1\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{2}{5}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{19}{110}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{31}{110}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)