Properties

Label 4225.cz
Modulus $4225$
Conductor $4225$
Order $780$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(780)) M = H._module chi = DirichletCharacter(H, M([507,730])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(17,4225)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4225\)
Conductor: \(4225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(780\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{780})$
Fixed field: Number field defined by a degree 780 polynomial (not computed)

First 31 of 192 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(14\)
\(\chi_{4225}(17,\cdot)\) \(-1\) \(1\) \(e\left(\frac{457}{780}\right)\) \(e\left(\frac{469}{780}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{73}{390}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{197}{260}\right)\) \(e\left(\frac{79}{390}\right)\) \(e\left(\frac{311}{390}\right)\) \(e\left(\frac{201}{260}\right)\) \(e\left(\frac{127}{130}\right)\)
\(\chi_{4225}(62,\cdot)\) \(-1\) \(1\) \(e\left(\frac{461}{780}\right)\) \(e\left(\frac{497}{780}\right)\) \(e\left(\frac{71}{390}\right)\) \(e\left(\frac{89}{390}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{201}{260}\right)\) \(e\left(\frac{107}{390}\right)\) \(e\left(\frac{283}{390}\right)\) \(e\left(\frac{213}{260}\right)\) \(e\left(\frac{121}{130}\right)\)
\(\chi_{4225}(88,\cdot)\) \(-1\) \(1\) \(e\left(\frac{491}{780}\right)\) \(e\left(\frac{707}{780}\right)\) \(e\left(\frac{101}{390}\right)\) \(e\left(\frac{209}{390}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{231}{260}\right)\) \(e\left(\frac{317}{390}\right)\) \(e\left(\frac{73}{390}\right)\) \(e\left(\frac{43}{260}\right)\) \(e\left(\frac{11}{130}\right)\)
\(\chi_{4225}(108,\cdot)\) \(-1\) \(1\) \(e\left(\frac{427}{780}\right)\) \(e\left(\frac{259}{780}\right)\) \(e\left(\frac{37}{390}\right)\) \(e\left(\frac{343}{390}\right)\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{167}{260}\right)\) \(e\left(\frac{259}{390}\right)\) \(e\left(\frac{131}{390}\right)\) \(e\left(\frac{111}{260}\right)\) \(e\left(\frac{107}{130}\right)\)
\(\chi_{4225}(127,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{780}\right)\) \(e\left(\frac{593}{780}\right)\) \(e\left(\frac{29}{390}\right)\) \(e\left(\frac{311}{390}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{29}{260}\right)\) \(e\left(\frac{203}{390}\right)\) \(e\left(\frac{187}{390}\right)\) \(e\left(\frac{217}{260}\right)\) \(e\left(\frac{119}{130}\right)\)
\(\chi_{4225}(153,\cdot)\) \(-1\) \(1\) \(e\left(\frac{683}{780}\right)\) \(e\left(\frac{491}{780}\right)\) \(e\left(\frac{293}{390}\right)\) \(e\left(\frac{197}{390}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{163}{260}\right)\) \(e\left(\frac{101}{390}\right)\) \(e\left(\frac{289}{390}\right)\) \(e\left(\frac{99}{260}\right)\) \(e\left(\frac{113}{130}\right)\)
\(\chi_{4225}(173,\cdot)\) \(-1\) \(1\) \(e\left(\frac{439}{780}\right)\) \(e\left(\frac{343}{780}\right)\) \(e\left(\frac{49}{390}\right)\) \(e\left(\frac{1}{390}\right)\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{179}{260}\right)\) \(e\left(\frac{343}{390}\right)\) \(e\left(\frac{47}{390}\right)\) \(e\left(\frac{147}{260}\right)\) \(e\left(\frac{89}{130}\right)\)
\(\chi_{4225}(212,\cdot)\) \(-1\) \(1\) \(e\left(\frac{181}{780}\right)\) \(e\left(\frac{97}{780}\right)\) \(e\left(\frac{181}{390}\right)\) \(e\left(\frac{139}{390}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{181}{260}\right)\) \(e\left(\frac{97}{390}\right)\) \(e\left(\frac{293}{390}\right)\) \(e\left(\frac{153}{260}\right)\) \(e\left(\frac{21}{130}\right)\)
\(\chi_{4225}(238,\cdot)\) \(-1\) \(1\) \(e\left(\frac{451}{780}\right)\) \(e\left(\frac{427}{780}\right)\) \(e\left(\frac{61}{390}\right)\) \(e\left(\frac{49}{390}\right)\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{191}{260}\right)\) \(e\left(\frac{37}{390}\right)\) \(e\left(\frac{353}{390}\right)\) \(e\left(\frac{183}{260}\right)\) \(e\left(\frac{71}{130}\right)\)
\(\chi_{4225}(277,\cdot)\) \(-1\) \(1\) \(e\left(\frac{349}{780}\right)\) \(e\left(\frac{493}{780}\right)\) \(e\left(\frac{349}{390}\right)\) \(e\left(\frac{31}{390}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{89}{260}\right)\) \(e\left(\frac{103}{390}\right)\) \(e\left(\frac{287}{390}\right)\) \(e\left(\frac{137}{260}\right)\) \(e\left(\frac{29}{130}\right)\)
\(\chi_{4225}(283,\cdot)\) \(-1\) \(1\) \(e\left(\frac{287}{780}\right)\) \(e\left(\frac{59}{780}\right)\) \(e\left(\frac{287}{390}\right)\) \(e\left(\frac{173}{390}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{27}{260}\right)\) \(e\left(\frac{59}{390}\right)\) \(e\left(\frac{331}{390}\right)\) \(e\left(\frac{211}{260}\right)\) \(e\left(\frac{57}{130}\right)\)
\(\chi_{4225}(303,\cdot)\) \(-1\) \(1\) \(e\left(\frac{463}{780}\right)\) \(e\left(\frac{511}{780}\right)\) \(e\left(\frac{73}{390}\right)\) \(e\left(\frac{97}{390}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{203}{260}\right)\) \(e\left(\frac{121}{390}\right)\) \(e\left(\frac{269}{390}\right)\) \(e\left(\frac{219}{260}\right)\) \(e\left(\frac{53}{130}\right)\)
\(\chi_{4225}(322,\cdot)\) \(-1\) \(1\) \(e\left(\frac{293}{780}\right)\) \(e\left(\frac{101}{780}\right)\) \(e\left(\frac{293}{390}\right)\) \(e\left(\frac{197}{390}\right)\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{33}{260}\right)\) \(e\left(\frac{101}{390}\right)\) \(e\left(\frac{289}{390}\right)\) \(e\left(\frac{229}{260}\right)\) \(e\left(\frac{113}{130}\right)\)
\(\chi_{4225}(342,\cdot)\) \(-1\) \(1\) \(e\left(\frac{517}{780}\right)\) \(e\left(\frac{109}{780}\right)\) \(e\left(\frac{127}{390}\right)\) \(e\left(\frac{313}{390}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{257}{260}\right)\) \(e\left(\frac{109}{390}\right)\) \(e\left(\frac{281}{390}\right)\) \(e\left(\frac{121}{260}\right)\) \(e\left(\frac{37}{130}\right)\)
\(\chi_{4225}(348,\cdot)\) \(-1\) \(1\) \(e\left(\frac{479}{780}\right)\) \(e\left(\frac{623}{780}\right)\) \(e\left(\frac{89}{390}\right)\) \(e\left(\frac{161}{390}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{219}{260}\right)\) \(e\left(\frac{233}{390}\right)\) \(e\left(\frac{157}{390}\right)\) \(e\left(\frac{7}{260}\right)\) \(e\left(\frac{29}{130}\right)\)
\(\chi_{4225}(387,\cdot)\) \(-1\) \(1\) \(e\left(\frac{641}{780}\right)\) \(e\left(\frac{197}{780}\right)\) \(e\left(\frac{251}{390}\right)\) \(e\left(\frac{29}{390}\right)\) \(e\left(\frac{5}{156}\right)\) \(e\left(\frac{121}{260}\right)\) \(e\left(\frac{197}{390}\right)\) \(e\left(\frac{193}{390}\right)\) \(e\left(\frac{233}{260}\right)\) \(e\left(\frac{111}{130}\right)\)
\(\chi_{4225}(413,\cdot)\) \(-1\) \(1\) \(e\left(\frac{671}{780}\right)\) \(e\left(\frac{407}{780}\right)\) \(e\left(\frac{281}{390}\right)\) \(e\left(\frac{149}{390}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{151}{260}\right)\) \(e\left(\frac{17}{390}\right)\) \(e\left(\frac{373}{390}\right)\) \(e\left(\frac{63}{260}\right)\) \(e\left(\frac{1}{130}\right)\)
\(\chi_{4225}(433,\cdot)\) \(-1\) \(1\) \(e\left(\frac{487}{780}\right)\) \(e\left(\frac{679}{780}\right)\) \(e\left(\frac{97}{390}\right)\) \(e\left(\frac{193}{390}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{227}{260}\right)\) \(e\left(\frac{289}{390}\right)\) \(e\left(\frac{101}{390}\right)\) \(e\left(\frac{31}{260}\right)\) \(e\left(\frac{17}{130}\right)\)
\(\chi_{4225}(452,\cdot)\) \(-1\) \(1\) \(e\left(\frac{209}{780}\right)\) \(e\left(\frac{293}{780}\right)\) \(e\left(\frac{209}{390}\right)\) \(e\left(\frac{251}{390}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{209}{260}\right)\) \(e\left(\frac{293}{390}\right)\) \(e\left(\frac{97}{390}\right)\) \(e\left(\frac{237}{260}\right)\) \(e\left(\frac{109}{130}\right)\)
\(\chi_{4225}(472,\cdot)\) \(-1\) \(1\) \(e\left(\frac{73}{780}\right)\) \(e\left(\frac{121}{780}\right)\) \(e\left(\frac{73}{390}\right)\) \(e\left(\frac{97}{390}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{73}{260}\right)\) \(e\left(\frac{121}{390}\right)\) \(e\left(\frac{269}{390}\right)\) \(e\left(\frac{89}{260}\right)\) \(e\left(\frac{53}{130}\right)\)
\(\chi_{4225}(478,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{780}\right)\) \(e\left(\frac{191}{780}\right)\) \(e\left(\frac{83}{390}\right)\) \(e\left(\frac{137}{390}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{83}{260}\right)\) \(e\left(\frac{191}{390}\right)\) \(e\left(\frac{199}{390}\right)\) \(e\left(\frac{119}{260}\right)\) \(e\left(\frac{103}{130}\right)\)
\(\chi_{4225}(498,\cdot)\) \(-1\) \(1\) \(e\left(\frac{499}{780}\right)\) \(e\left(\frac{763}{780}\right)\) \(e\left(\frac{109}{390}\right)\) \(e\left(\frac{241}{390}\right)\) \(e\left(\frac{55}{156}\right)\) \(e\left(\frac{239}{260}\right)\) \(e\left(\frac{373}{390}\right)\) \(e\left(\frac{17}{390}\right)\) \(e\left(\frac{67}{260}\right)\) \(e\left(\frac{129}{130}\right)\)
\(\chi_{4225}(517,\cdot)\) \(-1\) \(1\) \(e\left(\frac{557}{780}\right)\) \(e\left(\frac{389}{780}\right)\) \(e\left(\frac{167}{390}\right)\) \(e\left(\frac{83}{390}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{37}{260}\right)\) \(e\left(\frac{389}{390}\right)\) \(e\left(\frac{1}{390}\right)\) \(e\left(\frac{241}{260}\right)\) \(e\left(\frac{107}{130}\right)\)
\(\chi_{4225}(537,\cdot)\) \(-1\) \(1\) \(e\left(\frac{241}{780}\right)\) \(e\left(\frac{517}{780}\right)\) \(e\left(\frac{241}{390}\right)\) \(e\left(\frac{379}{390}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{241}{260}\right)\) \(e\left(\frac{127}{390}\right)\) \(e\left(\frac{263}{390}\right)\) \(e\left(\frac{73}{260}\right)\) \(e\left(\frac{61}{130}\right)\)
\(\chi_{4225}(563,\cdot)\) \(-1\) \(1\) \(e\left(\frac{511}{780}\right)\) \(e\left(\frac{67}{780}\right)\) \(e\left(\frac{121}{390}\right)\) \(e\left(\frac{289}{390}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{251}{260}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{323}{390}\right)\) \(e\left(\frac{103}{260}\right)\) \(e\left(\frac{111}{130}\right)\)
\(\chi_{4225}(602,\cdot)\) \(-1\) \(1\) \(e\left(\frac{409}{780}\right)\) \(e\left(\frac{133}{780}\right)\) \(e\left(\frac{19}{390}\right)\) \(e\left(\frac{271}{390}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{149}{260}\right)\) \(e\left(\frac{133}{390}\right)\) \(e\left(\frac{257}{390}\right)\) \(e\left(\frac{57}{260}\right)\) \(e\left(\frac{69}{130}\right)\)
\(\chi_{4225}(608,\cdot)\) \(-1\) \(1\) \(e\left(\frac{467}{780}\right)\) \(e\left(\frac{539}{780}\right)\) \(e\left(\frac{77}{390}\right)\) \(e\left(\frac{113}{390}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{207}{260}\right)\) \(e\left(\frac{149}{390}\right)\) \(e\left(\frac{241}{390}\right)\) \(e\left(\frac{231}{260}\right)\) \(e\left(\frac{47}{130}\right)\)
\(\chi_{4225}(628,\cdot)\) \(-1\) \(1\) \(e\left(\frac{523}{780}\right)\) \(e\left(\frac{151}{780}\right)\) \(e\left(\frac{133}{390}\right)\) \(e\left(\frac{337}{390}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{3}{260}\right)\) \(e\left(\frac{151}{390}\right)\) \(e\left(\frac{239}{390}\right)\) \(e\left(\frac{139}{260}\right)\) \(e\left(\frac{93}{130}\right)\)
\(\chi_{4225}(647,\cdot)\) \(-1\) \(1\) \(e\left(\frac{473}{780}\right)\) \(e\left(\frac{581}{780}\right)\) \(e\left(\frac{83}{390}\right)\) \(e\left(\frac{137}{390}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{213}{260}\right)\) \(e\left(\frac{191}{390}\right)\) \(e\left(\frac{199}{390}\right)\) \(e\left(\frac{249}{260}\right)\) \(e\left(\frac{103}{130}\right)\)
\(\chi_{4225}(667,\cdot)\) \(-1\) \(1\) \(e\left(\frac{577}{780}\right)\) \(e\left(\frac{529}{780}\right)\) \(e\left(\frac{187}{390}\right)\) \(e\left(\frac{163}{390}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{57}{260}\right)\) \(e\left(\frac{139}{390}\right)\) \(e\left(\frac{251}{390}\right)\) \(e\left(\frac{41}{260}\right)\) \(e\left(\frac{77}{130}\right)\)
\(\chi_{4225}(673,\cdot)\) \(-1\) \(1\) \(e\left(\frac{659}{780}\right)\) \(e\left(\frac{323}{780}\right)\) \(e\left(\frac{269}{390}\right)\) \(e\left(\frac{101}{390}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{139}{260}\right)\) \(e\left(\frac{323}{390}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{27}{260}\right)\) \(e\left(\frac{19}{130}\right)\)