sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(780))
M = H._module
chi = DirichletCharacter(H, M([117,310]))
pari:[g,chi] = znchar(Mod(108,4225))
| Modulus: | \(4225\) | |
| Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(780\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(17,\cdot)\)
\(\chi_{4225}(62,\cdot)\)
\(\chi_{4225}(88,\cdot)\)
\(\chi_{4225}(108,\cdot)\)
\(\chi_{4225}(127,\cdot)\)
\(\chi_{4225}(153,\cdot)\)
\(\chi_{4225}(173,\cdot)\)
\(\chi_{4225}(212,\cdot)\)
\(\chi_{4225}(238,\cdot)\)
\(\chi_{4225}(277,\cdot)\)
\(\chi_{4225}(283,\cdot)\)
\(\chi_{4225}(303,\cdot)\)
\(\chi_{4225}(322,\cdot)\)
\(\chi_{4225}(342,\cdot)\)
\(\chi_{4225}(348,\cdot)\)
\(\chi_{4225}(387,\cdot)\)
\(\chi_{4225}(413,\cdot)\)
\(\chi_{4225}(433,\cdot)\)
\(\chi_{4225}(452,\cdot)\)
\(\chi_{4225}(472,\cdot)\)
\(\chi_{4225}(478,\cdot)\)
\(\chi_{4225}(498,\cdot)\)
\(\chi_{4225}(517,\cdot)\)
\(\chi_{4225}(537,\cdot)\)
\(\chi_{4225}(563,\cdot)\)
\(\chi_{4225}(602,\cdot)\)
\(\chi_{4225}(608,\cdot)\)
\(\chi_{4225}(628,\cdot)\)
\(\chi_{4225}(647,\cdot)\)
\(\chi_{4225}(667,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{3}{20}\right),e\left(\frac{31}{78}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
| \( \chi_{ 4225 }(108, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{427}{780}\right)\) | \(e\left(\frac{259}{780}\right)\) | \(e\left(\frac{37}{390}\right)\) | \(e\left(\frac{343}{390}\right)\) | \(e\left(\frac{43}{156}\right)\) | \(e\left(\frac{167}{260}\right)\) | \(e\left(\frac{259}{390}\right)\) | \(e\left(\frac{131}{390}\right)\) | \(e\left(\frac{111}{260}\right)\) | \(e\left(\frac{107}{130}\right)\) |
sage:chi.jacobi_sum(n)