Properties

Label 4225.cx
Modulus $4225$
Conductor $4225$
Order $780$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(780)) M = H._module chi = DirichletCharacter(H, M([312,625])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(6,4225)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4225\)
Conductor: \(4225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(780\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{780})$
Fixed field: Number field defined by a degree 780 polynomial (not computed)

First 31 of 192 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(14\)
\(\chi_{4225}(6,\cdot)\) \(-1\) \(1\) \(e\left(\frac{157}{780}\right)\) \(e\left(\frac{31}{195}\right)\) \(e\left(\frac{157}{390}\right)\) \(e\left(\frac{281}{780}\right)\) \(e\left(\frac{115}{156}\right)\) \(e\left(\frac{157}{260}\right)\) \(e\left(\frac{62}{195}\right)\) \(e\left(\frac{727}{780}\right)\) \(e\left(\frac{73}{130}\right)\) \(e\left(\frac{61}{65}\right)\)
\(\chi_{4225}(11,\cdot)\) \(-1\) \(1\) \(e\left(\frac{359}{780}\right)\) \(e\left(\frac{92}{195}\right)\) \(e\left(\frac{359}{390}\right)\) \(e\left(\frac{727}{780}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{99}{260}\right)\) \(e\left(\frac{184}{195}\right)\) \(e\left(\frac{629}{780}\right)\) \(e\left(\frac{51}{130}\right)\) \(e\left(\frac{7}{65}\right)\)
\(\chi_{4225}(41,\cdot)\) \(-1\) \(1\) \(e\left(\frac{581}{780}\right)\) \(e\left(\frac{188}{195}\right)\) \(e\left(\frac{191}{390}\right)\) \(e\left(\frac{553}{780}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{61}{260}\right)\) \(e\left(\frac{181}{195}\right)\) \(e\left(\frac{251}{780}\right)\) \(e\left(\frac{59}{130}\right)\) \(e\left(\frac{3}{65}\right)\)
\(\chi_{4225}(46,\cdot)\) \(-1\) \(1\) \(e\left(\frac{343}{780}\right)\) \(e\left(\frac{64}{195}\right)\) \(e\left(\frac{343}{390}\right)\) \(e\left(\frac{599}{780}\right)\) \(e\left(\frac{133}{156}\right)\) \(e\left(\frac{83}{260}\right)\) \(e\left(\frac{128}{195}\right)\) \(e\left(\frac{73}{780}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{19}{65}\right)\)
\(\chi_{4225}(71,\cdot)\) \(-1\) \(1\) \(e\left(\frac{373}{780}\right)\) \(e\left(\frac{19}{195}\right)\) \(e\left(\frac{373}{390}\right)\) \(e\left(\frac{449}{780}\right)\) \(e\left(\frac{151}{156}\right)\) \(e\left(\frac{113}{260}\right)\) \(e\left(\frac{38}{195}\right)\) \(e\left(\frac{43}{780}\right)\) \(e\left(\frac{7}{130}\right)\) \(e\left(\frac{29}{65}\right)\)
\(\chi_{4225}(106,\cdot)\) \(-1\) \(1\) \(e\left(\frac{137}{780}\right)\) \(e\left(\frac{191}{195}\right)\) \(e\left(\frac{137}{390}\right)\) \(e\left(\frac{121}{780}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{137}{260}\right)\) \(e\left(\frac{187}{195}\right)\) \(e\left(\frac{227}{780}\right)\) \(e\left(\frac{43}{130}\right)\) \(e\left(\frac{11}{65}\right)\)
\(\chi_{4225}(111,\cdot)\) \(-1\) \(1\) \(e\left(\frac{439}{780}\right)\) \(e\left(\frac{37}{195}\right)\) \(e\left(\frac{49}{390}\right)\) \(e\left(\frac{587}{780}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{179}{260}\right)\) \(e\left(\frac{74}{195}\right)\) \(e\left(\frac{289}{780}\right)\) \(e\left(\frac{41}{130}\right)\) \(e\left(\frac{12}{65}\right)\)
\(\chi_{4225}(136,\cdot)\) \(-1\) \(1\) \(e\left(\frac{589}{780}\right)\) \(e\left(\frac{7}{195}\right)\) \(e\left(\frac{199}{390}\right)\) \(e\left(\frac{617}{780}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{69}{260}\right)\) \(e\left(\frac{14}{195}\right)\) \(e\left(\frac{139}{780}\right)\) \(e\left(\frac{71}{130}\right)\) \(e\left(\frac{62}{65}\right)\)
\(\chi_{4225}(141,\cdot)\) \(-1\) \(1\) \(e\left(\frac{311}{780}\right)\) \(e\left(\frac{8}{195}\right)\) \(e\left(\frac{311}{390}\right)\) \(e\left(\frac{343}{780}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{51}{260}\right)\) \(e\left(\frac{16}{195}\right)\) \(e\left(\frac{521}{780}\right)\) \(e\left(\frac{109}{130}\right)\) \(e\left(\frac{43}{65}\right)\)
\(\chi_{4225}(171,\cdot)\) \(-1\) \(1\) \(e\left(\frac{473}{780}\right)\) \(e\left(\frac{194}{195}\right)\) \(e\left(\frac{83}{390}\right)\) \(e\left(\frac{469}{780}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{213}{260}\right)\) \(e\left(\frac{193}{195}\right)\) \(e\left(\frac{203}{780}\right)\) \(e\left(\frac{27}{130}\right)\) \(e\left(\frac{19}{65}\right)\)
\(\chi_{4225}(206,\cdot)\) \(-1\) \(1\) \(e\left(\frac{287}{780}\right)\) \(e\left(\frac{161}{195}\right)\) \(e\left(\frac{287}{390}\right)\) \(e\left(\frac{151}{780}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{27}{260}\right)\) \(e\left(\frac{127}{195}\right)\) \(e\left(\frac{77}{780}\right)\) \(e\left(\frac{73}{130}\right)\) \(e\left(\frac{61}{65}\right)\)
\(\chi_{4225}(236,\cdot)\) \(-1\) \(1\) \(e\left(\frac{29}{780}\right)\) \(e\left(\frac{2}{195}\right)\) \(e\left(\frac{29}{390}\right)\) \(e\left(\frac{37}{780}\right)\) \(e\left(\frac{59}{156}\right)\) \(e\left(\frac{29}{260}\right)\) \(e\left(\frac{4}{195}\right)\) \(e\left(\frac{179}{780}\right)\) \(e\left(\frac{11}{130}\right)\) \(e\left(\frac{27}{65}\right)\)
\(\chi_{4225}(241,\cdot)\) \(-1\) \(1\) \(e\left(\frac{631}{780}\right)\) \(e\left(\frac{178}{195}\right)\) \(e\left(\frac{241}{390}\right)\) \(e\left(\frac{563}{780}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{111}{260}\right)\) \(e\left(\frac{161}{195}\right)\) \(e\left(\frac{721}{780}\right)\) \(e\left(\frac{69}{130}\right)\) \(e\left(\frac{63}{65}\right)\)
\(\chi_{4225}(266,\cdot)\) \(-1\) \(1\) \(e\left(\frac{241}{780}\right)\) \(e\left(\frac{178}{195}\right)\) \(e\left(\frac{241}{390}\right)\) \(e\left(\frac{173}{780}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{241}{260}\right)\) \(e\left(\frac{161}{195}\right)\) \(e\left(\frac{331}{780}\right)\) \(e\left(\frac{69}{130}\right)\) \(e\left(\frac{63}{65}\right)\)
\(\chi_{4225}(271,\cdot)\) \(-1\) \(1\) \(e\left(\frac{263}{780}\right)\) \(e\left(\frac{119}{195}\right)\) \(e\left(\frac{263}{390}\right)\) \(e\left(\frac{739}{780}\right)\) \(e\left(\frac{137}{156}\right)\) \(e\left(\frac{3}{260}\right)\) \(e\left(\frac{43}{195}\right)\) \(e\left(\frac{413}{780}\right)\) \(e\left(\frac{37}{130}\right)\) \(e\left(\frac{14}{65}\right)\)
\(\chi_{4225}(306,\cdot)\) \(-1\) \(1\) \(e\left(\frac{727}{780}\right)\) \(e\left(\frac{151}{195}\right)\) \(e\left(\frac{337}{390}\right)\) \(e\left(\frac{551}{780}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{207}{260}\right)\) \(e\left(\frac{107}{195}\right)\) \(e\left(\frac{157}{780}\right)\) \(e\left(\frac{83}{130}\right)\) \(e\left(\frac{56}{65}\right)\)
\(\chi_{4225}(331,\cdot)\) \(-1\) \(1\) \(e\left(\frac{457}{780}\right)\) \(e\left(\frac{166}{195}\right)\) \(e\left(\frac{67}{390}\right)\) \(e\left(\frac{341}{780}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{197}{260}\right)\) \(e\left(\frac{137}{195}\right)\) \(e\left(\frac{427}{780}\right)\) \(e\left(\frac{3}{130}\right)\) \(e\left(\frac{31}{65}\right)\)
\(\chi_{4225}(336,\cdot)\) \(-1\) \(1\) \(e\left(\frac{239}{780}\right)\) \(e\left(\frac{77}{195}\right)\) \(e\left(\frac{239}{390}\right)\) \(e\left(\frac{547}{780}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{239}{260}\right)\) \(e\left(\frac{154}{195}\right)\) \(e\left(\frac{749}{780}\right)\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{32}{65}\right)\)
\(\chi_{4225}(366,\cdot)\) \(-1\) \(1\) \(e\left(\frac{701}{780}\right)\) \(e\left(\frac{8}{195}\right)\) \(e\left(\frac{311}{390}\right)\) \(e\left(\frac{733}{780}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{181}{260}\right)\) \(e\left(\frac{16}{195}\right)\) \(e\left(\frac{131}{780}\right)\) \(e\left(\frac{109}{130}\right)\) \(e\left(\frac{43}{65}\right)\)
\(\chi_{4225}(371,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{780}\right)\) \(e\left(\frac{124}{195}\right)\) \(e\left(\frac{43}{390}\right)\) \(e\left(\frac{539}{780}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{43}{260}\right)\) \(e\left(\frac{53}{195}\right)\) \(e\left(\frac{373}{780}\right)\) \(e\left(\frac{97}{130}\right)\) \(e\left(\frac{49}{65}\right)\)
\(\chi_{4225}(396,\cdot)\) \(-1\) \(1\) \(e\left(\frac{673}{780}\right)\) \(e\left(\frac{154}{195}\right)\) \(e\left(\frac{283}{390}\right)\) \(e\left(\frac{509}{780}\right)\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{153}{260}\right)\) \(e\left(\frac{113}{195}\right)\) \(e\left(\frac{523}{780}\right)\) \(e\left(\frac{67}{130}\right)\) \(e\left(\frac{64}{65}\right)\)
\(\chi_{4225}(431,\cdot)\) \(-1\) \(1\) \(e\left(\frac{257}{780}\right)\) \(e\left(\frac{11}{195}\right)\) \(e\left(\frac{257}{390}\right)\) \(e\left(\frac{301}{780}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{257}{260}\right)\) \(e\left(\frac{22}{195}\right)\) \(e\left(\frac{107}{780}\right)\) \(e\left(\frac{93}{130}\right)\) \(e\left(\frac{51}{65}\right)\)
\(\chi_{4225}(436,\cdot)\) \(-1\) \(1\) \(e\left(\frac{139}{780}\right)\) \(e\left(\frac{97}{195}\right)\) \(e\left(\frac{139}{390}\right)\) \(e\left(\frac{527}{780}\right)\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{139}{260}\right)\) \(e\left(\frac{194}{195}\right)\) \(e\left(\frac{589}{780}\right)\) \(e\left(\frac{111}{130}\right)\) \(e\left(\frac{42}{65}\right)\)
\(\chi_{4225}(461,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{780}\right)\) \(e\left(\frac{142}{195}\right)\) \(e\left(\frac{109}{390}\right)\) \(e\left(\frac{677}{780}\right)\) \(e\left(\frac{55}{156}\right)\) \(e\left(\frac{109}{260}\right)\) \(e\left(\frac{89}{195}\right)\) \(e\left(\frac{619}{780}\right)\) \(e\left(\frac{1}{130}\right)\) \(e\left(\frac{32}{65}\right)\)
\(\chi_{4225}(466,\cdot)\) \(-1\) \(1\) \(e\left(\frac{191}{780}\right)\) \(e\left(\frac{188}{195}\right)\) \(e\left(\frac{191}{390}\right)\) \(e\left(\frac{163}{780}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{191}{260}\right)\) \(e\left(\frac{181}{195}\right)\) \(e\left(\frac{641}{780}\right)\) \(e\left(\frac{59}{130}\right)\) \(e\left(\frac{3}{65}\right)\)
\(\chi_{4225}(496,\cdot)\) \(-1\) \(1\) \(e\left(\frac{593}{780}\right)\) \(e\left(\frac{14}{195}\right)\) \(e\left(\frac{203}{390}\right)\) \(e\left(\frac{649}{780}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{73}{260}\right)\) \(e\left(\frac{28}{195}\right)\) \(e\left(\frac{83}{780}\right)\) \(e\left(\frac{77}{130}\right)\) \(e\left(\frac{59}{65}\right)\)
\(\chi_{4225}(531,\cdot)\) \(-1\) \(1\) \(e\left(\frac{167}{780}\right)\) \(e\left(\frac{146}{195}\right)\) \(e\left(\frac{167}{390}\right)\) \(e\left(\frac{751}{780}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{167}{260}\right)\) \(e\left(\frac{97}{195}\right)\) \(e\left(\frac{197}{780}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{21}{65}\right)\)
\(\chi_{4225}(561,\cdot)\) \(-1\) \(1\) \(e\left(\frac{149}{780}\right)\) \(e\left(\frac{17}{195}\right)\) \(e\left(\frac{149}{390}\right)\) \(e\left(\frac{217}{780}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{149}{260}\right)\) \(e\left(\frac{34}{195}\right)\) \(e\left(\frac{59}{780}\right)\) \(e\left(\frac{61}{130}\right)\) \(e\left(\frac{2}{65}\right)\)
\(\chi_{4225}(566,\cdot)\) \(-1\) \(1\) \(e\left(\frac{331}{780}\right)\) \(e\left(\frac{43}{195}\right)\) \(e\left(\frac{331}{390}\right)\) \(e\left(\frac{503}{780}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{71}{260}\right)\) \(e\left(\frac{86}{195}\right)\) \(e\left(\frac{241}{780}\right)\) \(e\left(\frac{9}{130}\right)\) \(e\left(\frac{28}{65}\right)\)
\(\chi_{4225}(591,\cdot)\) \(-1\) \(1\) \(e\left(\frac{541}{780}\right)\) \(e\left(\frac{118}{195}\right)\) \(e\left(\frac{151}{390}\right)\) \(e\left(\frac{233}{780}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{21}{260}\right)\) \(e\left(\frac{41}{195}\right)\) \(e\left(\frac{31}{780}\right)\) \(e\left(\frac{129}{130}\right)\) \(e\left(\frac{33}{65}\right)\)
\(\chi_{4225}(631,\cdot)\) \(-1\) \(1\) \(e\left(\frac{427}{780}\right)\) \(e\left(\frac{16}{195}\right)\) \(e\left(\frac{37}{390}\right)\) \(e\left(\frac{491}{780}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{167}{260}\right)\) \(e\left(\frac{32}{195}\right)\) \(e\left(\frac{457}{780}\right)\) \(e\left(\frac{23}{130}\right)\) \(e\left(\frac{21}{65}\right)\)