sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(780))
M = H._module
chi = DirichletCharacter(H, M([156,475]))
pari:[g,chi] = znchar(Mod(241,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(780\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(6,\cdot)\)
\(\chi_{4225}(11,\cdot)\)
\(\chi_{4225}(41,\cdot)\)
\(\chi_{4225}(46,\cdot)\)
\(\chi_{4225}(71,\cdot)\)
\(\chi_{4225}(106,\cdot)\)
\(\chi_{4225}(111,\cdot)\)
\(\chi_{4225}(136,\cdot)\)
\(\chi_{4225}(141,\cdot)\)
\(\chi_{4225}(171,\cdot)\)
\(\chi_{4225}(206,\cdot)\)
\(\chi_{4225}(236,\cdot)\)
\(\chi_{4225}(241,\cdot)\)
\(\chi_{4225}(266,\cdot)\)
\(\chi_{4225}(271,\cdot)\)
\(\chi_{4225}(306,\cdot)\)
\(\chi_{4225}(331,\cdot)\)
\(\chi_{4225}(336,\cdot)\)
\(\chi_{4225}(366,\cdot)\)
\(\chi_{4225}(371,\cdot)\)
\(\chi_{4225}(396,\cdot)\)
\(\chi_{4225}(431,\cdot)\)
\(\chi_{4225}(436,\cdot)\)
\(\chi_{4225}(461,\cdot)\)
\(\chi_{4225}(466,\cdot)\)
\(\chi_{4225}(496,\cdot)\)
\(\chi_{4225}(531,\cdot)\)
\(\chi_{4225}(561,\cdot)\)
\(\chi_{4225}(566,\cdot)\)
\(\chi_{4225}(591,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{95}{156}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(241, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{631}{780}\right)\) | \(e\left(\frac{178}{195}\right)\) | \(e\left(\frac{241}{390}\right)\) | \(e\left(\frac{563}{780}\right)\) | \(e\left(\frac{25}{156}\right)\) | \(e\left(\frac{111}{260}\right)\) | \(e\left(\frac{161}{195}\right)\) | \(e\left(\frac{721}{780}\right)\) | \(e\left(\frac{69}{130}\right)\) | \(e\left(\frac{63}{65}\right)\) |
sage:chi.jacobi_sum(n)