sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4225, base_ring=CyclotomicField(390))
M = H._module
chi = DirichletCharacter(H, M([156,380]))
pari:[g,chi] = znchar(Mod(581,4225))
Modulus: | \(4225\) | |
Conductor: | \(4225\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(195\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{4225}(16,\cdot)\)
\(\chi_{4225}(61,\cdot)\)
\(\chi_{4225}(81,\cdot)\)
\(\chi_{4225}(211,\cdot)\)
\(\chi_{4225}(256,\cdot)\)
\(\chi_{4225}(321,\cdot)\)
\(\chi_{4225}(341,\cdot)\)
\(\chi_{4225}(386,\cdot)\)
\(\chi_{4225}(406,\cdot)\)
\(\chi_{4225}(471,\cdot)\)
\(\chi_{4225}(516,\cdot)\)
\(\chi_{4225}(536,\cdot)\)
\(\chi_{4225}(581,\cdot)\)
\(\chi_{4225}(646,\cdot)\)
\(\chi_{4225}(666,\cdot)\)
\(\chi_{4225}(711,\cdot)\)
\(\chi_{4225}(731,\cdot)\)
\(\chi_{4225}(796,\cdot)\)
\(\chi_{4225}(841,\cdot)\)
\(\chi_{4225}(861,\cdot)\)
\(\chi_{4225}(906,\cdot)\)
\(\chi_{4225}(971,\cdot)\)
\(\chi_{4225}(1056,\cdot)\)
\(\chi_{4225}(1121,\cdot)\)
\(\chi_{4225}(1166,\cdot)\)
\(\chi_{4225}(1186,\cdot)\)
\(\chi_{4225}(1231,\cdot)\)
\(\chi_{4225}(1296,\cdot)\)
\(\chi_{4225}(1316,\cdot)\)
\(\chi_{4225}(1361,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((677,3551)\) → \((e\left(\frac{2}{5}\right),e\left(\frac{38}{39}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(14\) |
\( \chi_{ 4225 }(581, a) \) |
\(1\) | \(1\) | \(e\left(\frac{73}{195}\right)\) | \(e\left(\frac{121}{195}\right)\) | \(e\left(\frac{146}{195}\right)\) | \(e\left(\frac{194}{195}\right)\) | \(e\left(\frac{10}{39}\right)\) | \(e\left(\frac{8}{65}\right)\) | \(e\left(\frac{47}{195}\right)\) | \(e\left(\frac{148}{195}\right)\) | \(e\left(\frac{24}{65}\right)\) | \(e\left(\frac{41}{65}\right)\) |
sage:chi.jacobi_sum(n)