Properties

Label 4225.cm
Modulus $4225$
Conductor $4225$
Order $195$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4225, base_ring=CyclotomicField(390)) M = H._module chi = DirichletCharacter(H, M([78,10])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(16,4225)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(4225\)
Conductor: \(4225\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(195\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{195})$
Fixed field: Number field defined by a degree 195 polynomial (not computed)

First 31 of 96 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(6\) \(7\) \(8\) \(9\) \(11\) \(12\) \(14\)
\(\chi_{4225}(16,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{195}\right)\) \(e\left(\frac{113}{195}\right)\) \(e\left(\frac{88}{195}\right)\) \(e\left(\frac{157}{195}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{31}{195}\right)\) \(e\left(\frac{164}{195}\right)\) \(e\left(\frac{2}{65}\right)\) \(e\left(\frac{63}{65}\right)\)
\(\chi_{4225}(61,\cdot)\) \(1\) \(1\) \(e\left(\frac{136}{195}\right)\) \(e\left(\frac{172}{195}\right)\) \(e\left(\frac{77}{195}\right)\) \(e\left(\frac{113}{195}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{6}{65}\right)\) \(e\left(\frac{149}{195}\right)\) \(e\left(\frac{46}{195}\right)\) \(e\left(\frac{18}{65}\right)\) \(e\left(\frac{47}{65}\right)\)
\(\chi_{4225}(81,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{195}\right)\) \(e\left(\frac{11}{195}\right)\) \(e\left(\frac{31}{195}\right)\) \(e\left(\frac{124}{195}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{48}{65}\right)\) \(e\left(\frac{22}{195}\right)\) \(e\left(\frac{173}{195}\right)\) \(e\left(\frac{14}{65}\right)\) \(e\left(\frac{51}{65}\right)\)
\(\chi_{4225}(211,\cdot)\) \(1\) \(1\) \(e\left(\frac{56}{195}\right)\) \(e\left(\frac{2}{195}\right)\) \(e\left(\frac{112}{195}\right)\) \(e\left(\frac{58}{195}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{4}{195}\right)\) \(e\left(\frac{191}{195}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{27}{65}\right)\)
\(\chi_{4225}(256,\cdot)\) \(1\) \(1\) \(e\left(\frac{88}{195}\right)\) \(e\left(\frac{31}{195}\right)\) \(e\left(\frac{176}{195}\right)\) \(e\left(\frac{119}{195}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{62}{195}\right)\) \(e\left(\frac{133}{195}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{61}{65}\right)\)
\(\chi_{4225}(321,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{195}\right)\) \(e\left(\frac{49}{195}\right)\) \(e\left(\frac{14}{195}\right)\) \(e\left(\frac{56}{195}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{98}{195}\right)\) \(e\left(\frac{97}{195}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{44}{65}\right)\)
\(\chi_{4225}(341,\cdot)\) \(1\) \(1\) \(e\left(\frac{194}{195}\right)\) \(e\left(\frac{188}{195}\right)\) \(e\left(\frac{193}{195}\right)\) \(e\left(\frac{187}{195}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{181}{195}\right)\) \(e\left(\frac{14}{195}\right)\) \(e\left(\frac{62}{65}\right)\) \(e\left(\frac{3}{65}\right)\)
\(\chi_{4225}(386,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{195}\right)\) \(e\left(\frac{67}{195}\right)\) \(e\left(\frac{47}{195}\right)\) \(e\left(\frac{188}{195}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{56}{65}\right)\) \(e\left(\frac{134}{195}\right)\) \(e\left(\frac{61}{195}\right)\) \(e\left(\frac{38}{65}\right)\) \(e\left(\frac{27}{65}\right)\)
\(\chi_{4225}(406,\cdot)\) \(1\) \(1\) \(e\left(\frac{68}{195}\right)\) \(e\left(\frac{86}{195}\right)\) \(e\left(\frac{136}{195}\right)\) \(e\left(\frac{154}{195}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{3}{65}\right)\) \(e\left(\frac{172}{195}\right)\) \(e\left(\frac{23}{195}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{56}{65}\right)\)
\(\chi_{4225}(471,\cdot)\) \(1\) \(1\) \(e\left(\frac{137}{195}\right)\) \(e\left(\frac{179}{195}\right)\) \(e\left(\frac{79}{195}\right)\) \(e\left(\frac{121}{195}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{163}{195}\right)\) \(e\left(\frac{32}{195}\right)\) \(e\left(\frac{21}{65}\right)\) \(e\left(\frac{44}{65}\right)\)
\(\chi_{4225}(516,\cdot)\) \(1\) \(1\) \(e\left(\frac{154}{195}\right)\) \(e\left(\frac{103}{195}\right)\) \(e\left(\frac{113}{195}\right)\) \(e\left(\frac{62}{195}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{11}{195}\right)\) \(e\left(\frac{184}{195}\right)\) \(e\left(\frac{7}{65}\right)\) \(e\left(\frac{58}{65}\right)\)
\(\chi_{4225}(536,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{195}\right)\) \(e\left(\frac{77}{195}\right)\) \(e\left(\frac{22}{195}\right)\) \(e\left(\frac{88}{195}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{154}{195}\right)\) \(e\left(\frac{41}{195}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{32}{65}\right)\)
\(\chi_{4225}(581,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{195}\right)\) \(e\left(\frac{121}{195}\right)\) \(e\left(\frac{146}{195}\right)\) \(e\left(\frac{194}{195}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{8}{65}\right)\) \(e\left(\frac{47}{195}\right)\) \(e\left(\frac{148}{195}\right)\) \(e\left(\frac{24}{65}\right)\) \(e\left(\frac{41}{65}\right)\)
\(\chi_{4225}(646,\cdot)\) \(1\) \(1\) \(e\left(\frac{187}{195}\right)\) \(e\left(\frac{139}{195}\right)\) \(e\left(\frac{179}{195}\right)\) \(e\left(\frac{131}{195}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{83}{195}\right)\) \(e\left(\frac{112}{195}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{24}{65}\right)\)
\(\chi_{4225}(666,\cdot)\) \(1\) \(1\) \(e\left(\frac{149}{195}\right)\) \(e\left(\frac{68}{195}\right)\) \(e\left(\frac{103}{195}\right)\) \(e\left(\frac{22}{195}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{19}{65}\right)\) \(e\left(\frac{136}{195}\right)\) \(e\left(\frac{59}{195}\right)\) \(e\left(\frac{57}{65}\right)\) \(e\left(\frac{8}{65}\right)\)
\(\chi_{4225}(711,\cdot)\) \(1\) \(1\) \(e\left(\frac{106}{195}\right)\) \(e\left(\frac{157}{195}\right)\) \(e\left(\frac{17}{195}\right)\) \(e\left(\frac{68}{195}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{41}{65}\right)\) \(e\left(\frac{119}{195}\right)\) \(e\left(\frac{76}{195}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{7}{65}\right)\)
\(\chi_{4225}(731,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{195}\right)\) \(e\left(\frac{161}{195}\right)\) \(e\left(\frac{46}{195}\right)\) \(e\left(\frac{184}{195}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{127}{195}\right)\) \(e\left(\frac{68}{195}\right)\) \(e\left(\frac{4}{65}\right)\) \(e\left(\frac{61}{65}\right)\)
\(\chi_{4225}(796,\cdot)\) \(1\) \(1\) \(e\left(\frac{92}{195}\right)\) \(e\left(\frac{59}{195}\right)\) \(e\left(\frac{184}{195}\right)\) \(e\left(\frac{151}{195}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{118}{195}\right)\) \(e\left(\frac{77}{195}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{49}{65}\right)\)
\(\chi_{4225}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{195}\right)\) \(e\left(\frac{193}{195}\right)\) \(e\left(\frac{83}{195}\right)\) \(e\left(\frac{137}{195}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{9}{65}\right)\) \(e\left(\frac{191}{195}\right)\) \(e\left(\frac{4}{195}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{38}{65}\right)\)
\(\chi_{4225}(861,\cdot)\) \(1\) \(1\) \(e\left(\frac{161}{195}\right)\) \(e\left(\frac{152}{195}\right)\) \(e\left(\frac{127}{195}\right)\) \(e\left(\frac{118}{195}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{31}{65}\right)\) \(e\left(\frac{109}{195}\right)\) \(e\left(\frac{86}{195}\right)\) \(e\left(\frac{28}{65}\right)\) \(e\left(\frac{37}{65}\right)\)
\(\chi_{4225}(906,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{195}\right)\) \(e\left(\frac{16}{195}\right)\) \(e\left(\frac{116}{195}\right)\) \(e\left(\frac{74}{195}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{58}{65}\right)\) \(e\left(\frac{32}{195}\right)\) \(e\left(\frac{163}{195}\right)\) \(e\left(\frac{44}{65}\right)\) \(e\left(\frac{21}{65}\right)\)
\(\chi_{4225}(971,\cdot)\) \(1\) \(1\) \(e\left(\frac{172}{195}\right)\) \(e\left(\frac{34}{195}\right)\) \(e\left(\frac{149}{195}\right)\) \(e\left(\frac{11}{195}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{42}{65}\right)\) \(e\left(\frac{68}{195}\right)\) \(e\left(\frac{127}{195}\right)\) \(e\left(\frac{61}{65}\right)\) \(e\left(\frac{4}{65}\right)\)
\(\chi_{4225}(1056,\cdot)\) \(1\) \(1\) \(e\left(\frac{173}{195}\right)\) \(e\left(\frac{41}{195}\right)\) \(e\left(\frac{151}{195}\right)\) \(e\left(\frac{19}{195}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{43}{65}\right)\) \(e\left(\frac{82}{195}\right)\) \(e\left(\frac{113}{195}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{1}{65}\right)\)
\(\chi_{4225}(1121,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{195}\right)\) \(e\left(\frac{134}{195}\right)\) \(e\left(\frac{94}{195}\right)\) \(e\left(\frac{181}{195}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{73}{195}\right)\) \(e\left(\frac{122}{195}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{54}{65}\right)\)
\(\chi_{4225}(1166,\cdot)\) \(1\) \(1\) \(e\left(\frac{124}{195}\right)\) \(e\left(\frac{88}{195}\right)\) \(e\left(\frac{53}{195}\right)\) \(e\left(\frac{17}{195}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{176}{195}\right)\) \(e\left(\frac{19}{195}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{18}{65}\right)\)
\(\chi_{4225}(1186,\cdot)\) \(1\) \(1\) \(e\left(\frac{116}{195}\right)\) \(e\left(\frac{32}{195}\right)\) \(e\left(\frac{37}{195}\right)\) \(e\left(\frac{148}{195}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{51}{65}\right)\) \(e\left(\frac{64}{195}\right)\) \(e\left(\frac{131}{195}\right)\) \(e\left(\frac{23}{65}\right)\) \(e\left(\frac{42}{65}\right)\)
\(\chi_{4225}(1231,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{195}\right)\) \(e\left(\frac{106}{195}\right)\) \(e\left(\frac{86}{195}\right)\) \(e\left(\frac{149}{195}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{43}{65}\right)\) \(e\left(\frac{17}{195}\right)\) \(e\left(\frac{178}{195}\right)\) \(e\left(\frac{64}{65}\right)\) \(e\left(\frac{1}{65}\right)\)
\(\chi_{4225}(1296,\cdot)\) \(1\) \(1\) \(e\left(\frac{157}{195}\right)\) \(e\left(\frac{124}{195}\right)\) \(e\left(\frac{119}{195}\right)\) \(e\left(\frac{86}{195}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{27}{65}\right)\) \(e\left(\frac{53}{195}\right)\) \(e\left(\frac{142}{195}\right)\) \(e\left(\frac{16}{65}\right)\) \(e\left(\frac{49}{65}\right)\)
\(\chi_{4225}(1316,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{195}\right)\) \(e\left(\frac{23}{195}\right)\) \(e\left(\frac{118}{195}\right)\) \(e\left(\frac{82}{195}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{46}{195}\right)\) \(e\left(\frac{149}{195}\right)\) \(e\left(\frac{47}{65}\right)\) \(e\left(\frac{18}{65}\right)\)
\(\chi_{4225}(1361,\cdot)\) \(1\) \(1\) \(e\left(\frac{76}{195}\right)\) \(e\left(\frac{142}{195}\right)\) \(e\left(\frac{152}{195}\right)\) \(e\left(\frac{23}{195}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{11}{65}\right)\) \(e\left(\frac{89}{195}\right)\) \(e\left(\frac{106}{195}\right)\) \(e\left(\frac{33}{65}\right)\) \(e\left(\frac{32}{65}\right)\)
\(\chi_{4225}(1381,\cdot)\) \(1\) \(1\) \(e\left(\frac{128}{195}\right)\) \(e\left(\frac{116}{195}\right)\) \(e\left(\frac{61}{195}\right)\) \(e\left(\frac{49}{195}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{63}{65}\right)\) \(e\left(\frac{37}{195}\right)\) \(e\left(\frac{158}{195}\right)\) \(e\left(\frac{59}{65}\right)\) \(e\left(\frac{6}{65}\right)\)