Properties

Label 42237.li
Modulus $42237$
Conductor $42237$
Order $57$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42237, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([38,76,58])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(1075,42237)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(42237\)
Conductor: \(42237\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(57\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 57 polynomial

First 31 of 36 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(14\) \(16\) \(17\)
\(\chi_{42237}(1075,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{6}{19}\right)\)
\(\chi_{42237}(1888,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{11}{19}\right)\)
\(\chi_{42237}(3298,\cdot)\) \(1\) \(1\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{11}{19}\right)\)
\(\chi_{42237}(4111,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{8}{19}\right)\)
\(\chi_{42237}(5521,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{16}{19}\right)\)
\(\chi_{42237}(6334,\cdot)\) \(1\) \(1\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{5}{19}\right)\)
\(\chi_{42237}(7744,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{2}{19}\right)\)
\(\chi_{42237}(8557,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{2}{19}\right)\)
\(\chi_{42237}(9967,\cdot)\) \(1\) \(1\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{7}{19}\right)\)
\(\chi_{42237}(10780,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{18}{19}\right)\)
\(\chi_{42237}(12190,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{12}{19}\right)\)
\(\chi_{42237}(13003,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{15}{19}\right)\)
\(\chi_{42237}(14413,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{17}{19}\right)\)
\(\chi_{42237}(15226,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{12}{19}\right)\)
\(\chi_{42237}(16636,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{3}{19}\right)\)
\(\chi_{42237}(17449,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{9}{19}\right)\)
\(\chi_{42237}(18859,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{7}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{8}{19}\right)\)
\(\chi_{42237}(19672,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{10}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{6}{19}\right)\)
\(\chi_{42237}(21082,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{13}{19}\right)\)
\(\chi_{42237}(21895,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{57}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{3}{19}\right)\)
\(\chi_{42237}(23305,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{12}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{18}{19}\right)\)
\(\chi_{42237}(25528,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{57}\right)\) \(e\left(\frac{7}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{50}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{25}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{4}{19}\right)\)
\(\chi_{42237}(26341,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{47}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{10}{57}\right)\) \(e\left(\frac{14}{19}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{1}{19}\right)\) \(e\left(\frac{5}{57}\right)\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{16}{19}\right)\)
\(\chi_{42237}(27751,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{22}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{6}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{41}{57}\right)\) \(e\left(\frac{9}{19}\right)\)
\(\chi_{42237}(28564,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{57}\right)\) \(e\left(\frac{56}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{1}{57}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{15}{19}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{29}{57}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{13}{19}\right)\)
\(\chi_{42237}(29974,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{17}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{8}{19}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{14}{19}\right)\)
\(\chi_{42237}(30787,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{49}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{10}{19}\right)\)
\(\chi_{42237}(33010,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{57}\right)\) \(e\left(\frac{17}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{40}{57}\right)\) \(e\left(\frac{18}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{20}{57}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{7}{19}\right)\)
\(\chi_{42237}(34420,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{57}\right)\) \(e\left(\frac{4}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{53}{57}\right)\) \(e\left(\frac{2}{19}\right)\) \(e\left(\frac{16}{19}\right)\) \(e\left(\frac{11}{19}\right)\) \(e\left(\frac{55}{57}\right)\) \(e\left(\frac{8}{57}\right)\) \(e\left(\frac{5}{19}\right)\)
\(\chi_{42237}(35233,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{57}\right)\) \(e\left(\frac{26}{57}\right)\) \(e\left(\frac{14}{57}\right)\) \(e\left(\frac{31}{57}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{9}{19}\right)\) \(e\left(\frac{5}{19}\right)\) \(e\left(\frac{44}{57}\right)\) \(e\left(\frac{52}{57}\right)\) \(e\left(\frac{4}{19}\right)\)
\(\chi_{42237}(36643,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{57}\right)\) \(e\left(\frac{46}{57}\right)\) \(e\left(\frac{16}{57}\right)\) \(e\left(\frac{11}{57}\right)\) \(e\left(\frac{4}{19}\right)\) \(e\left(\frac{13}{19}\right)\) \(e\left(\frac{3}{19}\right)\) \(e\left(\frac{34}{57}\right)\) \(e\left(\frac{35}{57}\right)\) \(e\left(\frac{10}{19}\right)\)