Properties

Label 42237.16636
Modulus $42237$
Conductor $42237$
Order $57$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42237, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([38,76,10]))
 
Copy content pari:[g,chi] = znchar(Mod(16636,42237))
 

Basic properties

Modulus: \(42237\)
Conductor: \(42237\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(57\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 42237.li

\(\chi_{42237}(1075,\cdot)\) \(\chi_{42237}(1888,\cdot)\) \(\chi_{42237}(3298,\cdot)\) \(\chi_{42237}(4111,\cdot)\) \(\chi_{42237}(5521,\cdot)\) \(\chi_{42237}(6334,\cdot)\) \(\chi_{42237}(7744,\cdot)\) \(\chi_{42237}(8557,\cdot)\) \(\chi_{42237}(9967,\cdot)\) \(\chi_{42237}(10780,\cdot)\) \(\chi_{42237}(12190,\cdot)\) \(\chi_{42237}(13003,\cdot)\) \(\chi_{42237}(14413,\cdot)\) \(\chi_{42237}(15226,\cdot)\) \(\chi_{42237}(16636,\cdot)\) \(\chi_{42237}(17449,\cdot)\) \(\chi_{42237}(18859,\cdot)\) \(\chi_{42237}(19672,\cdot)\) \(\chi_{42237}(21082,\cdot)\) \(\chi_{42237}(21895,\cdot)\) \(\chi_{42237}(23305,\cdot)\) \(\chi_{42237}(25528,\cdot)\) \(\chi_{42237}(26341,\cdot)\) \(\chi_{42237}(27751,\cdot)\) \(\chi_{42237}(28564,\cdot)\) \(\chi_{42237}(29974,\cdot)\) \(\chi_{42237}(30787,\cdot)\) \(\chi_{42237}(33010,\cdot)\) \(\chi_{42237}(34420,\cdot)\) \(\chi_{42237}(35233,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 57 polynomial

Values on generators

\((32852,38989,12637)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{2}{3}\right),e\left(\frac{5}{57}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 42237 }(16636, a) \) \(1\)\(1\)\(e\left(\frac{5}{57}\right)\)\(e\left(\frac{10}{57}\right)\)\(e\left(\frac{1}{57}\right)\)\(e\left(\frac{47}{57}\right)\)\(e\left(\frac{5}{19}\right)\)\(e\left(\frac{2}{19}\right)\)\(e\left(\frac{18}{19}\right)\)\(e\left(\frac{52}{57}\right)\)\(e\left(\frac{20}{57}\right)\)\(e\left(\frac{3}{19}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 42237 }(16636,a) \;\) at \(\;a = \) e.g. 2