sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(42237, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([38,76,10]))
pari:[g,chi] = znchar(Mod(16636,42237))
| Modulus: | \(42237\) | |
| Conductor: | \(42237\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(57\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{42237}(1075,\cdot)\)
\(\chi_{42237}(1888,\cdot)\)
\(\chi_{42237}(3298,\cdot)\)
\(\chi_{42237}(4111,\cdot)\)
\(\chi_{42237}(5521,\cdot)\)
\(\chi_{42237}(6334,\cdot)\)
\(\chi_{42237}(7744,\cdot)\)
\(\chi_{42237}(8557,\cdot)\)
\(\chi_{42237}(9967,\cdot)\)
\(\chi_{42237}(10780,\cdot)\)
\(\chi_{42237}(12190,\cdot)\)
\(\chi_{42237}(13003,\cdot)\)
\(\chi_{42237}(14413,\cdot)\)
\(\chi_{42237}(15226,\cdot)\)
\(\chi_{42237}(16636,\cdot)\)
\(\chi_{42237}(17449,\cdot)\)
\(\chi_{42237}(18859,\cdot)\)
\(\chi_{42237}(19672,\cdot)\)
\(\chi_{42237}(21082,\cdot)\)
\(\chi_{42237}(21895,\cdot)\)
\(\chi_{42237}(23305,\cdot)\)
\(\chi_{42237}(25528,\cdot)\)
\(\chi_{42237}(26341,\cdot)\)
\(\chi_{42237}(27751,\cdot)\)
\(\chi_{42237}(28564,\cdot)\)
\(\chi_{42237}(29974,\cdot)\)
\(\chi_{42237}(30787,\cdot)\)
\(\chi_{42237}(33010,\cdot)\)
\(\chi_{42237}(34420,\cdot)\)
\(\chi_{42237}(35233,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((32852,38989,12637)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{2}{3}\right),e\left(\frac{5}{57}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 42237 }(16636, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{57}\right)\) | \(e\left(\frac{10}{57}\right)\) | \(e\left(\frac{1}{57}\right)\) | \(e\left(\frac{47}{57}\right)\) | \(e\left(\frac{5}{19}\right)\) | \(e\left(\frac{2}{19}\right)\) | \(e\left(\frac{18}{19}\right)\) | \(e\left(\frac{52}{57}\right)\) | \(e\left(\frac{20}{57}\right)\) | \(e\left(\frac{3}{19}\right)\) |
sage:chi.jacobi_sum(n)