sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(42237, base_ring=CyclotomicField(114))
M = H._module
chi = DirichletCharacter(H, M([38,95,54]))
pari:[g,chi] = znchar(Mod(4846,42237))
| Modulus: | \(42237\) | |
| Conductor: | \(42237\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(114\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{42237}(400,\cdot)\)
\(\chi_{42237}(628,\cdot)\)
\(\chi_{42237}(2623,\cdot)\)
\(\chi_{42237}(2851,\cdot)\)
\(\chi_{42237}(4846,\cdot)\)
\(\chi_{42237}(5074,\cdot)\)
\(\chi_{42237}(7069,\cdot)\)
\(\chi_{42237}(7297,\cdot)\)
\(\chi_{42237}(9292,\cdot)\)
\(\chi_{42237}(9520,\cdot)\)
\(\chi_{42237}(11515,\cdot)\)
\(\chi_{42237}(11743,\cdot)\)
\(\chi_{42237}(13738,\cdot)\)
\(\chi_{42237}(13966,\cdot)\)
\(\chi_{42237}(15961,\cdot)\)
\(\chi_{42237}(16189,\cdot)\)
\(\chi_{42237}(18184,\cdot)\)
\(\chi_{42237}(20407,\cdot)\)
\(\chi_{42237}(20635,\cdot)\)
\(\chi_{42237}(22630,\cdot)\)
\(\chi_{42237}(22858,\cdot)\)
\(\chi_{42237}(24853,\cdot)\)
\(\chi_{42237}(25081,\cdot)\)
\(\chi_{42237}(27304,\cdot)\)
\(\chi_{42237}(29299,\cdot)\)
\(\chi_{42237}(29527,\cdot)\)
\(\chi_{42237}(31522,\cdot)\)
\(\chi_{42237}(31750,\cdot)\)
\(\chi_{42237}(33745,\cdot)\)
\(\chi_{42237}(33973,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((32852,38989,12637)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{5}{6}\right),e\left(\frac{9}{19}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 42237 }(4846, a) \) |
\(1\) | \(1\) | \(e\left(\frac{73}{114}\right)\) | \(e\left(\frac{16}{57}\right)\) | \(e\left(\frac{7}{114}\right)\) | \(e\left(\frac{21}{38}\right)\) | \(e\left(\frac{35}{38}\right)\) | \(e\left(\frac{40}{57}\right)\) | \(e\left(\frac{55}{114}\right)\) | \(e\left(\frac{11}{57}\right)\) | \(e\left(\frac{32}{57}\right)\) | \(e\left(\frac{41}{57}\right)\) |
sage:chi.jacobi_sum(n)