Properties

Label 42237.400
Modulus $42237$
Conductor $42237$
Order $114$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42237, base_ring=CyclotomicField(114)) M = H._module chi = DirichletCharacter(H, M([38,95,42]))
 
Copy content pari:[g,chi] = znchar(Mod(400,42237))
 

Basic properties

Modulus: \(42237\)
Conductor: \(42237\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(114\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 42237.mr

\(\chi_{42237}(400,\cdot)\) \(\chi_{42237}(628,\cdot)\) \(\chi_{42237}(2623,\cdot)\) \(\chi_{42237}(2851,\cdot)\) \(\chi_{42237}(4846,\cdot)\) \(\chi_{42237}(5074,\cdot)\) \(\chi_{42237}(7069,\cdot)\) \(\chi_{42237}(7297,\cdot)\) \(\chi_{42237}(9292,\cdot)\) \(\chi_{42237}(9520,\cdot)\) \(\chi_{42237}(11515,\cdot)\) \(\chi_{42237}(11743,\cdot)\) \(\chi_{42237}(13738,\cdot)\) \(\chi_{42237}(13966,\cdot)\) \(\chi_{42237}(15961,\cdot)\) \(\chi_{42237}(16189,\cdot)\) \(\chi_{42237}(18184,\cdot)\) \(\chi_{42237}(20407,\cdot)\) \(\chi_{42237}(20635,\cdot)\) \(\chi_{42237}(22630,\cdot)\) \(\chi_{42237}(22858,\cdot)\) \(\chi_{42237}(24853,\cdot)\) \(\chi_{42237}(25081,\cdot)\) \(\chi_{42237}(27304,\cdot)\) \(\chi_{42237}(29299,\cdot)\) \(\chi_{42237}(29527,\cdot)\) \(\chi_{42237}(31522,\cdot)\) \(\chi_{42237}(31750,\cdot)\) \(\chi_{42237}(33745,\cdot)\) \(\chi_{42237}(33973,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{57})$
Fixed field: Number field defined by a degree 114 polynomial (not computed)

Values on generators

\((32852,38989,12637)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{5}{6}\right),e\left(\frac{7}{19}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 42237 }(400, a) \) \(1\)\(1\)\(e\left(\frac{61}{114}\right)\)\(e\left(\frac{4}{57}\right)\)\(e\left(\frac{73}{114}\right)\)\(e\left(\frac{29}{38}\right)\)\(e\left(\frac{23}{38}\right)\)\(e\left(\frac{10}{57}\right)\)\(e\left(\frac{85}{114}\right)\)\(e\left(\frac{17}{57}\right)\)\(e\left(\frac{8}{57}\right)\)\(e\left(\frac{53}{57}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 42237 }(400,a) \;\) at \(\;a = \) e.g. 2