sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(42237, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([3,3,5]))
pari:[g,chi] = znchar(Mod(10235,42237))
\(\chi_{42237}(10235,\cdot)\)
\(\chi_{42237}(24125,\cdot)\)
\(\chi_{42237}(26615,\cdot)\)
\(\chi_{42237}(34772,\cdot)\)
\(\chi_{42237}(36794,\cdot)\)
\(\chi_{42237}(40739,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((32852,38989,12637)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{1}{6}\right),e\left(\frac{5}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(14\) | \(16\) | \(17\) |
| \( \chi_{ 42237 }(10235, a) \) |
\(1\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{18}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{4}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) |
sage:chi.jacobi_sum(n)