Properties

Label 2223.1343
Modulus $2223$
Conductor $2223$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2223, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([3,3,5]))
 
Copy content pari:[g,chi] = znchar(Mod(1343,2223))
 

Basic properties

Modulus: \(2223\)
Conductor: \(2223\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2223.iq

\(\chi_{2223}(725,\cdot)\) \(\chi_{2223}(1226,\cdot)\) \(\chi_{2223}(1343,\cdot)\) \(\chi_{2223}(1427,\cdot)\) \(\chi_{2223}(1895,\cdot)\) \(\chi_{2223}(2162,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: Number field defined by a degree 18 polynomial

Values on generators

\((1730,1198,1522)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{1}{6}\right),e\left(\frac{5}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(14\)\(16\)\(17\)
\( \chi_{ 2223 }(1343, a) \) \(1\)\(1\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{11}{18}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2223 }(1343,a) \;\) at \(\;a = \) e.g. 2