Properties

Label 417.p
Modulus $417$
Conductor $417$
Order $138$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(417, base_ring=CyclotomicField(138)) M = H._module chi = DirichletCharacter(H, M([69,1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(2,417)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(417\)
Conductor: \(417\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(138\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{69})$
Fixed field: Number field defined by a degree 138 polynomial (not computed)

First 31 of 44 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{417}(2,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{69}\right)\) \(e\left(\frac{1}{69}\right)\) \(e\left(\frac{17}{138}\right)\) \(e\left(\frac{25}{69}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{29}{46}\right)\) \(e\left(\frac{7}{138}\right)\) \(e\left(\frac{32}{69}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{2}{69}\right)\)
\(\chi_{417}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{25}{138}\right)\) \(e\left(\frac{53}{69}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{21}{46}\right)\) \(e\left(\frac{59}{138}\right)\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{1}{23}\right)\) \(e\left(\frac{7}{69}\right)\)
\(\chi_{417}(26,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{69}\right)\) \(e\left(\frac{65}{69}\right)\) \(e\left(\frac{1}{138}\right)\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{41}{138}\right)\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{61}{69}\right)\)
\(\chi_{417}(32,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{69}\right)\) \(e\left(\frac{5}{69}\right)\) \(e\left(\frac{85}{138}\right)\) \(e\left(\frac{56}{69}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{7}{46}\right)\) \(e\left(\frac{35}{138}\right)\) \(e\left(\frac{22}{69}\right)\) \(e\left(\frac{8}{23}\right)\) \(e\left(\frac{10}{69}\right)\)
\(\chi_{417}(50,\cdot)\) \(1\) \(1\) \(e\left(\frac{52}{69}\right)\) \(e\left(\frac{35}{69}\right)\) \(e\left(\frac{43}{138}\right)\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{3}{46}\right)\) \(e\left(\frac{107}{138}\right)\) \(e\left(\frac{16}{69}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{1}{69}\right)\)
\(\chi_{417}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{58}{69}\right)\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{109}{138}\right)\) \(e\left(\frac{2}{69}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{29}{46}\right)\) \(e\left(\frac{53}{138}\right)\) \(e\left(\frac{55}{69}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{25}{69}\right)\)
\(\chi_{417}(56,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{53}{69}\right)\) \(e\left(\frac{73}{138}\right)\) \(e\left(\frac{14}{69}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{19}{46}\right)\) \(e\left(\frac{95}{138}\right)\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{37}{69}\right)\)
\(\chi_{417}(68,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{69}\right)\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{59}{138}\right)\) \(e\left(\frac{34}{69}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{33}{46}\right)\) \(e\left(\frac{73}{138}\right)\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{11}{69}\right)\)
\(\chi_{417}(92,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{69}\right)\) \(e\left(\frac{29}{69}\right)\) \(e\left(\frac{79}{138}\right)\) \(e\left(\frac{35}{69}\right)\) \(e\left(\frac{3}{23}\right)\) \(e\left(\frac{13}{46}\right)\) \(e\left(\frac{65}{138}\right)\) \(e\left(\frac{31}{69}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{58}{69}\right)\)
\(\chi_{417}(98,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{69}\right)\) \(e\left(\frac{32}{69}\right)\) \(e\left(\frac{61}{138}\right)\) \(e\left(\frac{41}{69}\right)\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{31}{46}\right)\) \(e\left(\frac{17}{138}\right)\) \(e\left(\frac{58}{69}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{64}{69}\right)\)
\(\chi_{417}(101,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{69}\right)\) \(e\left(\frac{62}{69}\right)\) \(e\left(\frac{19}{138}\right)\) \(e\left(\frac{32}{69}\right)\) \(e\left(\frac{8}{23}\right)\) \(e\left(\frac{27}{46}\right)\) \(e\left(\frac{89}{138}\right)\) \(e\left(\frac{52}{69}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{55}{69}\right)\)
\(\chi_{417}(104,\cdot)\) \(1\) \(1\) \(e\left(\frac{68}{69}\right)\) \(e\left(\frac{67}{69}\right)\) \(e\left(\frac{35}{138}\right)\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{11}{46}\right)\) \(e\left(\frac{55}{138}\right)\) \(e\left(\frac{5}{69}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{65}{69}\right)\)
\(\chi_{417}(110,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{69}\right)\) \(e\left(\frac{25}{69}\right)\) \(e\left(\frac{11}{138}\right)\) \(e\left(\frac{4}{69}\right)\) \(e\left(\frac{1}{23}\right)\) \(e\left(\frac{35}{46}\right)\) \(e\left(\frac{37}{138}\right)\) \(e\left(\frac{41}{69}\right)\) \(e\left(\frac{17}{23}\right)\) \(e\left(\frac{50}{69}\right)\)
\(\chi_{417}(119,\cdot)\) \(1\) \(1\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{47}{138}\right)\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{21}{23}\right)\) \(e\left(\frac{45}{46}\right)\) \(e\left(\frac{133}{138}\right)\) \(e\left(\frac{56}{69}\right)\) \(e\left(\frac{12}{23}\right)\) \(e\left(\frac{38}{69}\right)\)
\(\chi_{417}(128,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{69}\right)\) \(e\left(\frac{7}{69}\right)\) \(e\left(\frac{119}{138}\right)\) \(e\left(\frac{37}{69}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{19}{46}\right)\) \(e\left(\frac{49}{138}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{2}{23}\right)\) \(e\left(\frac{14}{69}\right)\)
\(\chi_{417}(134,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{11}{69}\right)\) \(e\left(\frac{20}{23}\right)\) \(e\left(\frac{33}{46}\right)\) \(e\left(\frac{119}{138}\right)\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{34}{69}\right)\)
\(\chi_{417}(158,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{69}\right)\) \(e\left(\frac{61}{69}\right)\) \(e\left(\frac{71}{138}\right)\) \(e\left(\frac{7}{69}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{21}{46}\right)\) \(e\left(\frac{13}{138}\right)\) \(e\left(\frac{20}{69}\right)\) \(e\left(\frac{1}{23}\right)\) \(e\left(\frac{53}{69}\right)\)
\(\chi_{417}(161,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{69}\right)\) \(e\left(\frac{8}{69}\right)\) \(e\left(\frac{67}{138}\right)\) \(e\left(\frac{62}{69}\right)\) \(e\left(\frac{4}{23}\right)\) \(e\left(\frac{25}{46}\right)\) \(e\left(\frac{125}{138}\right)\) \(e\left(\frac{49}{69}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{16}{69}\right)\)
\(\chi_{417}(179,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{20}{69}\right)\) \(e\left(\frac{133}{138}\right)\) \(e\left(\frac{17}{69}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{5}{46}\right)\) \(e\left(\frac{71}{138}\right)\) \(e\left(\frac{19}{69}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{40}{69}\right)\)
\(\chi_{417}(197,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{26}{69}\right)\) \(e\left(\frac{97}{138}\right)\) \(e\left(\frac{29}{69}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{41}{46}\right)\) \(e\left(\frac{113}{138}\right)\) \(e\left(\frac{4}{69}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{52}{69}\right)\)
\(\chi_{417}(200,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{69}\right)\) \(e\left(\frac{37}{69}\right)\) \(e\left(\frac{77}{138}\right)\) \(e\left(\frac{28}{69}\right)\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{15}{46}\right)\) \(e\left(\frac{121}{138}\right)\) \(e\left(\frac{11}{69}\right)\) \(e\left(\frac{4}{23}\right)\) \(e\left(\frac{5}{69}\right)\)
\(\chi_{417}(209,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{69}\right)\) \(e\left(\frac{68}{69}\right)\) \(e\left(\frac{121}{138}\right)\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{11}{23}\right)\) \(e\left(\frac{17}{46}\right)\) \(e\left(\frac{131}{138}\right)\) \(e\left(\frac{37}{69}\right)\) \(e\left(\frac{3}{23}\right)\) \(e\left(\frac{67}{69}\right)\)
\(\chi_{417}(212,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{69}\right)\) \(e\left(\frac{49}{69}\right)\) \(e\left(\frac{5}{138}\right)\) \(e\left(\frac{52}{69}\right)\) \(e\left(\frac{13}{23}\right)\) \(e\left(\frac{41}{46}\right)\) \(e\left(\frac{67}{138}\right)\) \(e\left(\frac{50}{69}\right)\) \(e\left(\frac{14}{23}\right)\) \(e\left(\frac{29}{69}\right)\)
\(\chi_{417}(224,\cdot)\) \(1\) \(1\) \(e\left(\frac{62}{69}\right)\) \(e\left(\frac{55}{69}\right)\) \(e\left(\frac{107}{138}\right)\) \(e\left(\frac{64}{69}\right)\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{31}{46}\right)\) \(e\left(\frac{109}{138}\right)\) \(e\left(\frac{35}{69}\right)\) \(e\left(\frac{19}{23}\right)\) \(e\left(\frac{41}{69}\right)\)
\(\chi_{417}(227,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{69}\right)\) \(e\left(\frac{10}{69}\right)\) \(e\left(\frac{101}{138}\right)\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{5}{23}\right)\) \(e\left(\frac{37}{46}\right)\) \(e\left(\frac{1}{138}\right)\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{16}{23}\right)\) \(e\left(\frac{20}{69}\right)\)
\(\chi_{417}(248,\cdot)\) \(1\) \(1\) \(e\left(\frac{64}{69}\right)\) \(e\left(\frac{59}{69}\right)\) \(e\left(\frac{37}{138}\right)\) \(e\left(\frac{26}{69}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{9}{46}\right)\) \(e\left(\frac{137}{138}\right)\) \(e\left(\frac{25}{69}\right)\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{49}{69}\right)\)
\(\chi_{417}(254,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{69}\right)\) \(e\left(\frac{44}{69}\right)\) \(e\left(\frac{127}{138}\right)\) \(e\left(\frac{65}{69}\right)\) \(e\left(\frac{22}{23}\right)\) \(e\left(\frac{11}{46}\right)\) \(e\left(\frac{101}{138}\right)\) \(e\left(\frac{28}{69}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{19}{69}\right)\)
\(\chi_{417}(269,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{69}\right)\) \(e\left(\frac{13}{69}\right)\) \(e\left(\frac{83}{138}\right)\) \(e\left(\frac{49}{69}\right)\) \(e\left(\frac{18}{23}\right)\) \(e\left(\frac{9}{46}\right)\) \(e\left(\frac{91}{138}\right)\) \(e\left(\frac{2}{69}\right)\) \(e\left(\frac{7}{23}\right)\) \(e\left(\frac{26}{69}\right)\)
\(\chi_{417}(281,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{69}\right)\) \(e\left(\frac{41}{69}\right)\) \(e\left(\frac{7}{138}\right)\) \(e\left(\frac{59}{69}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{39}{46}\right)\) \(e\left(\frac{11}{138}\right)\) \(e\left(\frac{1}{69}\right)\) \(e\left(\frac{15}{23}\right)\) \(e\left(\frac{13}{69}\right)\)
\(\chi_{417}(290,\cdot)\) \(1\) \(1\) \(e\left(\frac{56}{69}\right)\) \(e\left(\frac{43}{69}\right)\) \(e\left(\frac{41}{138}\right)\) \(e\left(\frac{40}{69}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{5}{46}\right)\) \(e\left(\frac{25}{138}\right)\) \(e\left(\frac{65}{69}\right)\) \(e\left(\frac{9}{23}\right)\) \(e\left(\frac{17}{69}\right)\)
\(\chi_{417}(293,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{69}\right)\) \(e\left(\frac{58}{69}\right)\) \(e\left(\frac{89}{138}\right)\) \(e\left(\frac{1}{69}\right)\) \(e\left(\frac{6}{23}\right)\) \(e\left(\frac{3}{46}\right)\) \(e\left(\frac{61}{138}\right)\) \(e\left(\frac{62}{69}\right)\) \(e\left(\frac{10}{23}\right)\) \(e\left(\frac{47}{69}\right)\)